Uniqueness of a solution to the Lavrent’ev integral equation in n-dimensional space

详细

We study the multidimensional analogue of the Lavrent’ev integral equation to which an inverse problem of acoustic sounding is reduced. Conditions under which the studied equation has a unique solution are established. Results of numerical experiments concerning the solution of the inverse acoustic problem with variously located sets of sources and detectors are presented.

全文:

О единственности решения интегрального уравнения Лаврентьева в n-мерном пространстве 1

1. ВВЕДЕНИЕ

Многие нелинейные коэффициентные обратные задачи для уравнений с частными производными могут быть сведены к линейным интегральным уравнениям. Общий подход к такой редукции с использованием преобразования Лапласа предложил М.М. Лаврентьев в работах [1], [2]. Ниже рассмотрим обратную задачу волнового зондирования в следующей постановке. Акустическая неоднородность, локализованная в ограниченной области D 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadseacqGHck cZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1ri snaaCaaaleqabaGaaG4maaaaaaa@46EC@ , зондируется волновыми полями, порожденными точечными источниками, расположенными в точках множества Y 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadMfacqGHck cZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1ri snaaCaaaleqabaGaaG4maaaaaaa@4701@ , где YD= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadMfacqGHPi YXcaWGebGaaGypaiabgwGigdaa@3E0A@  (см. [3]). Акустическое поле u(x,t)= u (y) (x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadwhacaaIOa GaamiEaiaaiYcacaaMi8UaamiDaiaaiMcacaaI9aGaamyDamaaCaaa leqabaGaaGikaiaadMhacaaIPaaaaOGaaGikaiaadIhacaaISaGaaG jcVlaadshacaaIPaaaaa@491E@ , возбуждаемое в момент t = 0 источником, находящимся в точке yY MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadMhacqGHii IZcaWGzbaaaa@3BE5@ , определяется решением задачи Коши

1 c 2 x u tt (y) x,t =Δ u (y) x,t δ xy g t ,x 3 ,t0; u (y) x,0 =0, u t (y) x,0 =0,x 3 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaWaaSaaae aacaaIXaaabaGaam4yamaaCaaaleqabaGaaGOmaaaakmaabmaabaGa amiEaaGaayjkaiaawMcaaaaacaaMi8UaamyDamaaDaaaleaacaWG0b GaamiDaaqaaiaaiIcacaWG5bGaaGykaaaakmaabmaabaGaamiEaiaa iYcacaaMi8UaamiDaaGaayjkaiaawMcaaiaai2dacqqHuoarcaWG1b WaaWbaaSqabeaacaaIOaGaamyEaiaaiMcaaaGcdaqadaqaaiaadIha caaISaGaaGjcVlaadshaaiaawIcacaGLPaaacqGHsislcqaH0oazda qadaqaaiaadIhacqGHsislcaWG5baacaGLOaGaayzkaaGaam4zamaa bmaabaGaamiDaaGaayjkaiaawMcaaiaaiYcacaaMf8UaamiEaiabgI Gioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xh Hi1aaWbaaSqabeaacaaIZaaaaOGaaGilaiaaywW7caWG0bGaeyyzIm RaaGimaiaaiUdaaeaacaWG1bWaaWbaaSqabeaacaaIOaGaamyEaiaa iMcaaaGcdaqadaqaaiaadIhacaaISaGaaGjcVlaaicdaaiaawIcaca GLPaaacaaI9aGaaGimaiaaiYcacaaMf8UaamyDamaaDaaaleaacaWG 0baabaGaaGikaiaadMhacaaIPaaaaOWaaeWaaeaacaWG4bGaaGilai aayIW7caaIWaaacaGLOaGaayzkaaGaaGypaiaaicdacaaISaGaaGzb VlaadIhacqGHiiIZcqWFDeIudaahaaWcbeqaaiaaiodaaaGccaaIUa aaaaa@977C@  (1.1)

Величина c(x) > 0 есть скорость распространения сигнала в точке x 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadIhacqGHii IZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1ri snaaCaaaleqabaGaaG4maaaaaaa@46A8@ . Предполагается, что функция c(x) кусочно-непрерывна, и что вне области D она тождественно равна известной константе c 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadogadaWgaa WcbaGaaGimaaqabaaaaa@3A53@ . Предположим, кроме того, что функция g имеет ненулевое среднее значение на [0,) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiUfacaaIWa GaaGilaiabg6HiLkaaiMcaaaa@3CFE@  и g(t) C 0 e βt ,t0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaaemaabaGaam 4zaiaaiIcacaWG0bGaaGykaaGaay5bSlaawIa7aiabgsMiJkaadoea daWgaaWcbaGaaGimaaqabaGccaWGLbWaaWbaaSqabeaacqGHsislcq aHYoGycaWG0baaaOGaaGilaiaayIW7caaMe8UaamiDaiabgwMiZkaa icdaaaa@4E53@ , при некотором β>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabek7aIjaai6 dacaaIWaaaaa@3BA8@ .

Для получения информации о функции c(x),xD MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadogacaaIOa GaamiEaiaaiMcacaaISaGaaGjcVlaadIhacqGHiiIZcaWGebaaaa@4160@ , рассеянное поле u= u (y) (x,t),yY MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadwhacaaI9a GaamyDamaaCaaaleqabaGaaGikaiaadMhacaaIPaaaaOGaaGikaiaa dIhacaaISaGaaGjcVlaadshacaaIPaGaaGilaiaayIW7caWG5bGaey icI4Saamywaaaa@4923@ , измеряется при t > 0 в точках x=zZ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadIhacaaI9a GaamOEaiabgIGiolaadQfaaaa@3DAB@ , где Z 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadQfacqGHck cZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1ri snaaCaaaleqabaGaaG4maaaaaaa@4702@  – множество координат детекторов, причем ZD= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadQfacqGHPi YXcaWGebGaaGypaiabgwGigdaa@3E0B@ . Определим для суммируемой функции f=f(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadAgacaaI9a GaamOzaiaaiIcacaWG0bGaaGykaaaa@3D80@ , t0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadshatuuDJX wAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=5Nkfkaaicda aaa@458D@ , преобразование Лапласа f ˜ (p)= 0 e pt f(t)dt MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaaGaaabaGaam OzaaGaay5adaGaaGikaiaadchacaaIPaGaaGypamaapehabeWcbaGa aGimaaqaaiabg6HiLcqdcqGHRiI8aOGaamyzamaaCaaaleqabaGaey OeI0IaamiCaiaadshaaaGccaWGMbGaaGikaiaadshacaaIPaGaaGjc VlaadsgacaWG0baaaa@4CAA@ . Будем считать, что все функции u (y) (x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadwhadaahaa WcbeqaaiaaiIcacaWG5bGaaGykaaaakiaaiIcacaWG4bGaaGilaiaa yIW7caWG0bGaaGykaaaa@41BB@ , yY MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadMhacqGHii IZcaWGzbaaaa@3BE5@ , и их производные по t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadshaaaa@397E@  до второго порядка включительно экспоненциально убывают при t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadshacqGHsg IRcqGHEisPaaa@3CDC@ , когда xZ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadIhacqGHii IZcaWGAbaaaa@3BE5@ , и, кроме того, u (y) (x,t)0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadwhadaahaa WcbeqaaiaaiIcacaWG5bGaaGykaaaakiaaiIcacaWG4bGaaGilaiaa yIW7caWG0bGaaGykaiabgkziUkaaicdaaaa@4462@  при |x| MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiYhacaWG4b GaaGiFaiabgkziUkabg6HiLcaa@3EEC@ , где yY MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadMhacqGHii IZcaWGzbaaaa@3BE5@  и t > 0. В [4], [5] обсуждаются условия на функцию c(x), обеспечивающие эти требования. Обозначим

ξ x = 1 c 2 x 1 c 0 2 ,xD, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabe67a4naabm aabaGaamiEaaGaayjkaiaawMcaaiaai2dadaWcaaqaaiaaigdaaeaa caWGJbWaaWbaaSqabeaacaaIYaaaaOWaaeWaaeaacaWG4baacaGLOa GaayzkaaaaaiabgkHiTmaalaaabaGaaGymaaqaaiaadogadaqhaaWc baGaaGimaaqaaiaaikdaaaaaaOGaaGilaiaaywW7caWG4bGaeyicI4 SaamiraiaaiYcaaaa@4D52@

и перепишем уравнение (1.1) в виде

Δ u (y) 1 c 0 2 u tt (y) x,t =ξ x u tt (y) x,t δ xy g t . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabfs5aejaadw hadaahaaWcbeqaaiaaiIcacaWG5bGaaGykaaaakiabgkHiTmaalaaa baGaaGymaaqaaiaadogadaqhaaWcbaGaaGimaaqaaiaaikdaaaaaaO GaaGjcVlaadwhadaqhaaWcbaGaamiDaiaadshaaeaacaaIOaGaamyE aiaaiMcaaaGcdaqadaqaaiaadIhacaaISaGaaGjcVlaadshaaiaawI cacaGLPaaacaaI9aGaeqOVdG3aaeWaaeaacaWG4baacaGLOaGaayzk aaGaaGjcVlaadwhadaqhaaWcbaGaamiDaiaadshaaeaacaaIOaGaam yEaiaaiMcaaaGcdaqadaqaaiaadIhacaaISaGaaGjcVlaadshaaiaa wIcacaGLPaaacqGHsislcqaH0oazdaqadaqaaiaadIhacqGHsislca WG5baacaGLOaGaayzkaaGaaGjcVlaadEgadaqadaqaaiaadshaaiaa wIcacaGLPaaacaaIUaaaaa@6D50@

Очевидно, что для нахождения c(x) достаточно ограничиться отысканием ξ(x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabe67a4jaaiI cacaWG4bGaaGykaaaa@3CAA@  при xD MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadIhacqGHii IZcaWGebaaaa@3BCF@ , по которой c(x) определяется однозначно.

Известно, что поставленная задача приводится к следующему интегральному уравнению относительно искомой функции ξ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabe67a4baa@3A48@  с известной правой частью f(y,z), называемому уравнением М.М. Лаврентьева (см. [6] MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3794@ [8]):

D ξ x dx xy xz =f y,z , y,z Y×Z. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaapefabeWcba Gaamiraaqab0Gaey4kIipakmaalaaabaGaeqOVdG3aaeWaaeaacaWG 4baacaGLOaGaayzkaaGaamizaiaadIhaaeaadaabdaqaaiaadIhacq GHsislcaWG5baacaGLhWUaayjcSdGaaGjcVpaaemaabaGaamiEaiab gkHiTiaadQhaaiaawEa7caGLiWoaaaGaaGypaiaadAgadaqadaqaai aadMhacaaISaGaaGjcVlaadQhaaiaawIcacaGLPaaacaaISaGaaGzb VpaabmaabaGaamyEaiaaiYcacaaMi8UaamOEaaGaayjkaiaawMcaai abgIGiolaadMfacqGHxdaTcaWGAbGaaGOlaaaa@6528@  (1.2)

Итак, данные наблюдения { u (y) (z,t)|t>0,yY,zZ} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiUhacaWG1b WaaWbaaSqabeaacaaIOaGaamyEaiaaiMcaaaGccaaIOaGaamOEaiaa iYcacaaMi8UaamiDaiaaiMcacaaMe8UaaGjbVlaayIW7caaI8bGaaG jcVlaaysW7caaMe8UaamiDaiaai6dacaaIWaGaaGilaiaayIW7caaM e8UaamyEaiabgIGiolaadMfacaaISaGaaGjbVlaayIW7caWG6bGaey icI4SaamOwaiaai2haaaa@5F0A@  позволяют однозначно найти ξ(x),xD MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabe67a4jaaiI cacaWG4bGaaGykaiaaiYcacaaMi8UaamiEaiabgIGiolaadseaaaa@423B@ , если оператор интегрального уравнения (1.2) инъективен.

Кроме рассматриваемой задачи (1.1) к уравнению (1.2) сводятся также обратные задачи акустического зондирования гармоническими по времени источниками с частотой ω(0, ω 0 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeM8a3jabgI GiolaaiIcacaaIWaGaaGilaiaayIW7cqaHjpWDdaWgaaWcbaGaaGim aaqabaGccaaIDbaaaa@432D@  (см. подробнее в [9, § 3.1], [10, с. 223], [11]). К аналогичному уравнению приводится также коэффициентная обратная задача для уравнения акустики в ограниченной области с условием Дирихле на границе (см. [12]).

Условиям единственности решения уравнения (1.2) посвящено значительное число работ, начиная с [2] и далее [3], [7], [10], [11], [13] MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3794@ [16]. Например, если Y и Z есть открытые области на плоскости, не пересекающей D, либо на аналитической поверхности, содержащей множество D внутри, то оператор уравнения (1.2) инъективен, и тем самым рассматриваемая обратная задача имеет единственное решение. При этом совокупная размерность 4 пространственного носителя данных Y×Z MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadMfacqGHxd aTcaWGAbaaaa@3C59@  в (1.2) больше количества 3 независимых переменных искомой функция ξ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabe67a4baa@3A48@ . Позднее в работах [14], [16], [17] показано, что инъективность оператора в (1.2) имеет место и в случае, когда одно из многообразий Y, Z есть плоскость, а второе – прямая. В этом случае уже совокупная размерность носителя данных Y×Z MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadMfacqGHxd aTcaWGAbaaaa@3C59@  и размерность носителя D искомой функции совпадают и обе равны трем. Вопросы численного решения уравнения М.М. Лаврентьева (1.2) изучены значительно меньше, трудности при этом являются общими для всех многомерных обратных задач рассеяния. Суть их в том, что для реконструкции локальных неоднородностей малых размеров требуется использовать достаточно густые дискретные сетки, что, в свою очередь, приводит к результирующим линейным системам сверхвысокой размерности. Хранение и обработка этих систем требует применения распределенных вычислений и часто распределенного хранения данных (см. [17]). Альтернативным подходам к численному решению рассматриваемой задачи посвящены, в частности, работы [7], [18], [19].

В настоящей статье рассматривается вопрос единственности решения многомерного уравнения М.М. Лаврентьева

D ξ x dx xy n2 xz n2 =f y,z , y,z Y×Z, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaapefabeWcba Gaamiraaqab0Gaey4kIipakmaalaaabaGaeqOVdG3aaeWaaeaacaWG 4baacaGLOaGaayzkaaGaamizaiaadIhaaeaadaabdaqaaiaadIhacq GHsislcaWG5baacaGLhWUaayjcSdWaaWbaaSqabeaacaWGUbGaeyOe I0IaaGOmaaaakiaayIW7daabdaqaaiaadIhacqGHsislcaWG6baaca GLhWUaayjcSdWaaWbaaSqabeaacaWGUbGaeyOeI0IaaGOmaaaaaaGc caaI9aGaamOzamaabmaabaGaamyEaiaaiYcacaaMi8UaamOEaaGaay jkaiaawMcaaiaaiYcacaaMf8+aaeWaaeaacaWG5bGaaGilaiaayIW7 caWG6baacaGLOaGaayzkaaGaeyicI4SaamywaiabgEna0kaadQfaca aISaaaaa@6ACC@  (1.3)

где D n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadseacqGHck cZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1ri snaaCaaaleqabaGaamOBaaaaaaa@4722@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3794@  ограниченная область с кусочно-гладкой границей, Y n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadMfacqGHck cZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1ri snaaCaaaleqabaGaamOBaaaaaaa@4737@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3794@  открытый интервал или отрезок на произвольной прямой L n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadYeacqGHck cZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1ri snaaCaaaleqabaGaamOBaaaaaaa@472A@ , Y D ¯ = MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadMfacqGHPi YXdaqdaaqaaiaadseaaaGaaGypaiabgwGigdaa@3E1B@ , а Z – область в (n-1)-мерной гиперплоскости Π n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabfc6aqjabgk Oimprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xh Hi1aaWbaaSqabeaacaWGUbaaaaaa@47D7@ , не пересекающей D ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaanaaabaGaam iraaaaaaa@395F@ . Ядро интегрального оператора в левой части (1.3) с точностью до константы является произведением фундаментальных решений уравнения Лапласа в пространстве n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamrr1ngBPrwtHr hAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xhHi1aaWbaaSqabeaa caWGUbaaaaaa@445D@ , n3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaad6gacqGHLj YScaaIZaaaaa@3BFB@ . Тем самым, (1.3) служит обобщением уравнения (1.2) и совпадает с ним в случае n=3.

Статья имеет следующую структуру. В разд. 2 доказывается единственность решения уравнения (1.3). При n=3 аналогичное утверждение доказано в [15] MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3794@ [17], причем в [15], [16] используется дополнительное условие, что прямая L, содержащая промежуток Y, не пересекает D ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaanaaabaGaam iraaaaaaa@395F@ . В настоящей работе это условие не накладывается, а, кроме того, данный результат обобщается на произвольные размерности n3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaad6gatuuDJX wAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=5Nkfkaaioda aaa@458A@ . Доказанная теорема позволяет утверждать единственность решения описанной выше трехмерной обратной задачи акустики в случае, когда продолжение отрезка Y пересекает D ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaanaaabaGaam iraaaaaaa@395F@ . В разд. 3 приводятся результаты численных экспериментов, в которых решается эта задача с различными расположениями множеств X и Y.

2. ЕДИНСТВЕННОСТЬ РЕШЕНИЯ МНОГОМЕРНОГО УРАВНЕНИЯ М.М. ЛАВРЕНТЬЕВА

Предлагаемое доказательство единственности решения уравнения (1.3) основано на следующей теореме.

Теорема 2.1. Линейные комбинации функций семейства

u x xy n2 yY,uH D MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaacmaabaGaaG jcVpaaeiaabaWaaSaaaeaacaWG1bWaaeWaaeaacaWG4baacaGLOaGa ayzkaaaabaWaaqWaaeaacaWG4bGaeyOeI0IaamyEaaGaay5bSlaawI a7amaaCaaaleqabaGaamOBaiabgkHiTiaaikdaaaaaaOGaaGjbVlaa ysW7aiaawIa7aiaaysW7caaMe8UaamyEaiabgIGiolaadMfacaaISa GaaGjbVlaadwhacqGHiiIZtuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy 0Hgip5wzaGqbaiab=TqiinaabmaabaGaamiraaGaayjkaiaawMcaaa Gaay5Eaiaaw2haaaaa@6574@

плотны в пространстве L 2 (D) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadYeadaWgaa WcbaGaaGOmaaqabaGccaaIOaGaamiraiaaiMcaaaa@3C76@ .

Здесь

H D ={u L 2 D |Δu x =0,xD} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae83cHG0aaeWaaeaacaWG ebaacaGLOaGaayzkaaGaaGypaiaaiUhacaWG1bGaeyicI4Saamitam aaBaaaleaacaaIYaaabeaakmaabmaabaGaamiraaGaayjkaiaawMca aiaaysW7caaMe8UaaGjcVlaaiYhacaaMi8UaaGjbVlaaysW7cqqHuo arcaWG1bWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaaGypaiaaicda caaISaGaamiEaiabgIGiolaadseacaaI9baaaa@6383@

есть множество всех гармонических функций в D, принадлежащих L 2 (D) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadYeadaWgaa WcbaGaaGOmaaqabaGccaaIOaGaamiraiaaiMcaaaa@3C76@ . Для доказательства теоремы 2.1 достаточно убедиться, что соотношение

D h x u x dx xy n2 =0yY,uH D MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaapefabeWcba Gaamiraaqab0Gaey4kIipakmaalaaabaGaamiAamaabmaabaGaamiE aaGaayjkaiaawMcaaiaadwhadaqadaqaaiaadIhaaiaawIcacaGLPa aacaWGKbGaamiEaaqaamaaemaabaGaamiEaiabgkHiTiaadMhaaiaa wEa7caGLiWoadaahaaWcbeqaaiaad6gacqGHsislcaaIYaaaaaaaki aai2dacaaIWaGaaGzbVlabgcGiIiaadMhacqGHiiIZcaWGzbGaaGil aiaayIW7caaMi8UaaGjbVlaadwhacqGHiiIZtuuDJXwAK1uy0Hwmae Hbfv3ySLgzG0uy0Hgip5wzaGqbaiab=TqiinaabmaabaGaamiraaGa ayjkaiaawMcaaaaa@6960@  (2.1)

с h L 2 (D) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadIgacqGHii IZcaWGmbWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadseacaaIPaaa aa@3EE7@  влечет h(x)=0 п.в. в D. Приступая к доказательству, заметим, что функция f(y), определенная выражением в левой части равенства (2.1), гармонична по y n \ D ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadMhacqGHii IZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1ri snaaCaaaleqabaGaamOBaaaakiaacYfadaqdaaqaaiaadseaaaaaaa@48A3@  и тем самым вещественно аналитична вне D ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaanaaabaGaam iraaaaaaa@395F@ . Отсюда следует, что сужение f на L\ D ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadYeacaGGCb Waa0aaaeaacaWGebaaaaaa@3B10@  также вещественно аналитично. Нетрудно видеть, что множество L\ D ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadYeacaGGCb Waa0aaaeaacaWGebaaaaaa@3B10@  либо совпадает с L, либо содержит две неограниченные компоненты. В обоих случаях равенство f(y)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadAgacaaIOa GaamyEaiaaiMcacaaI9aGaaGimaaaa@3D54@ , yY MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadMhacqGHii IZcaWGzbaaaa@3BE5@  продолжается по аналитичности на всю неограниченную компоненту множества L\ D ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadYeacaGGCb Waa0aaaeaacaWGebaaaaaa@3B10@ , содержащую Y. Выберем на прямой L произвольно точку и рассмотрим шар с центром в этой точке, содержащий D ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaanaaabaGaam iraaaaaaa@395F@  внутри. Без ограничения общности можем считать, что выбранная точка совпадает с началом координат, а шар, содержащий D ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaanaaabaGaam iraaaaaaa@395F@ , имеет радиус 1ε MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaigdacqGHsi slcqaH1oqzaaa@3BD4@  с некоторым ε>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabew7aLjaai6 dacaaIWaaaaa@3BAE@ . Таким образом, |x|1ε MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiYhacaWG4b GaaGiFamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGa e8xFQqOaaGymaiabgkHiTiabew7aLbaa@4A30@  для всех x D ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadIhacqGHii IZdaqdaaqaaiaadseaaaaaaa@3BE0@ . Пусть для определенности L={(0,,0, x n )| x n } MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadYeacaaI9a GaaG4EaiaaiIcacaaIWaGaaGilaiablAciljaaiYcacaaIWaGaaGil aiaadIhadaWgaaWcbaGaamOBaaqabaGccaaIPaGaaGjcVlaaysW7ca aI8bGaaGjcVlaaysW7caWG4bWaaSbaaSqaaiaad6gaaeqaaOGaeyic I48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFDe IucaaI9baaaa@5A10@  и f(y)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadAgacaaIOa GaamyEaiaaiMcacaaI9aGaaGimaaaa@3D54@  для точек y, принадлежащих неограниченной компоненте {xL| x n 0}\ D ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiUhacaWG4b GaeyicI4SaamitaiaaysW7caaMi8UaaGiFaiaayIW7caaMe8UaamiE amaaBaaaleaacaWGUbaabeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGqbaOGae8NFQuOaaGimaiaai2hacaGGCbWaa0aaaeaa caWGebaaaaaa@5514@ . Указанная компонента содержит луч L + ={(0,,0, x n )| x n 1ε} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadYeadaahaa WcbeqaaiabgUcaRaaakiaai2dacaaI7bGaaGikaiaaicdacaaISaGa eSOjGSKaaGilaiaaicdacaaISaGaamiEamaaBaaaleaacaWGUbaabe aakiaaiMcacaaMe8UaaGjcVlaaiYhacaaMi8UaaGjbVlaadIhadaWg aaWcbaGaamOBaaqabaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDOb cv39gaiuaakiab=5NkfkaaigdacqGHsislcqaH1oqzcaaI9baaaa@5D91@ . Поэтому на основании (2.1) имеем

D h x u x dx xy n2 =0y L + ,uH D . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaapefabeWcba Gaamiraaqab0Gaey4kIipakmaalaaabaGaamiAamaabmaabaGaamiE aaGaayjkaiaawMcaaiaadwhadaqadaqaaiaadIhaaiaawIcacaGLPa aacaWGKbGaamiEaaqaamaaemaabaGaamiEaiabgkHiTiaadMhaaiaa wEa7caGLiWoadaahaaWcbeqaaiaad6gacqGHsislcaaIYaaaaaaaki aai2dacaaIWaGaaGzbVlabgcGiIiaadMhacqGHiiIZcaWGmbWaaWba aSqabeaacqGHRaWkaaGccaaISaGaaGjcVlaaysW7caaMi8UaamyDai abgIGioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGa e83cHG0aaeWaaeaacaWGebaacaGLOaGaayzkaaGaaGOlaaaa@6B24@  (2.2)

Переходим к доказательству сформулированной теоремы с учетом сделанного уточнения. Обозначим x =( x 1 ,, x n1 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiqadIhagaqbai aai2dacaaIOaGaamiEamaaBaaaleaacaaIXaaabeaakiaaiYcacqWI MaYscaaISaGaamiEamaaBaaaleaacaWGUbGaeyOeI0IaaGymaaqaba GccaaIPaaaaa@4404@ , S r ={ x n1 x =r} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadofadaWgaa WcbaGaamOCaaqabaGccaaI9aGaaG4EaiqadIhagaqbaiabgIGioprr 1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xhHi1aaW baaSqabeaacaWGUbGaeyOeI0IaaGymaaaakiaayIW7caaMe8+aaqqa aeaacaaMi8+aaqWaaeaaceWG4bGbauaaaiaawEa7caGLiWoaaiaawE a7aiaaysW7caaI9aGaamOCaiaai2haaaa@5B2D@ .

Далее нам понадобится следующее вспомогательное утверждение.

Лемма 2.1. Для a>0 и b таких, что a 2 + b 2 1ε MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadggadaahaa WcbeqaaiaaikdaaaGccqGHRaWkcaWGIbWaaWbaaSqabeaacaaIYaaa amrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGccqWF9P cHcaaIXaGaeyOeI0IaeqyTdugaaa@4BBC@ , имеет место равенство

e iμt dt a 2 + bi 2 t 2 (n2)/2 = =C n e iμb e μ 2 μ a (n3)/2 V μa ,μ\{0}, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaWaa8qCae qaleaacqGHsislcqGHEisPaeaacqGHEisPa0Gaey4kIipakmaalaaa baGaamyzamaaCaaaleqabaGaeyOeI0IaamyAaiabeY7aTjaadshaaa GccaWGKbGaamiDaaqaamaabmaabaGaamyyamaaCaaaleqabaGaaGOm aaaakiabgUcaRmaabmaabaGaamOyaiabgkHiTiaadMgadaGcaaqaai aaikdaaSqabaGccqGHsislcaWG0baacaGLOaGaayzkaaWaaWbaaSqa beaacaaIYaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIOaGaam OBaiabgkHiTiaaikdacaaIPaGaaG4laiaaikdaaaaaaOGaaGypaaqa aiabg2da9iaadoeadaqadaqaaiaad6gaaiaawIcacaGLPaaacaWGLb WaaWbaaSqabeaacqGHsislcaWGPbGaeqiVd0MaamOyaaaakiaadwga daahaaWcbeqaaiabgkHiTiabeY7aTnaakaaabaGaaGOmaaqabaaaaO WaaeWaaeaadaWcaaqaaiabeY7aTbqaaiaadggaaaaacaGLOaGaayzk aaWaaWbaaSqabeaacaaIOaGaamOBaiabgkHiTiaaiodacaaIPaGaaG 4laiaaikdaaaGccaWGwbWaaeWaaeaacqaH8oqBcaWGHbaacaGLOaGa ayzkaaGaaGilaiaaywW7cqaH8oqBcqGHiiIZtuuDJXwAK1uy0HMmae Hbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1risjaacYfacaaI7bGaaGim aiaai2hacaaISaaaaaa@8B12@  (2.3)

где V(s) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadAfacaaIOa Gaam4CaiaaiMcaaaa@3BBD@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3796@  функция, аналитическая при s\{0} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadohacqGHii IZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=jqi djaacYfacaaI7bGaaGimaiaai2haaaa@4935@  и удовлетворяющая условию | r (n3)/2 V(r e iψ )|=O(1),r0+,ψ[0,2π) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiYhacaWGYb WaaWbaaSqabeaacaaIOaGaamOBaiabgkHiTiaaiodacaaIPaGaaG4l aiaaikdaaaGccaWGwbGaaGikaiaadkhacaWGLbWaaWbaaSqabeaaca WGPbGaeqiYdKhaaOGaaGykaiaaiYhacaaI9aGaam4taiaaiIcacaaI XaGaaGykaiaaiYcacaaMi8UaaGjbVlaadkhacqGHsgIRcaaIWaGaey 4kaSIaaGilaiaaysW7cqaHipqEcqGHiiIZcaaIBbGaaGimaiaaiYca caaMi8UaaGOmaiabec8aWjaaiMcaaaa@6100@   | r (n3)/2 V(r e iψ )|=O(1),r0+,ψ[0,2π) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiYhacaWGYb WaaWbaaSqabeaacaaIOaGaamOBaiabgkHiTiaaiodacaaIPaGaaG4l aiaaikdaaaGccaWGwbGaaGikaiaadkhacaWGLbWaaWbaaSqabeaaca WGPbGaeqiYdKhaaOGaaGykaiaaiYhacaaI9aGaam4taiaaiIcacaaI XaGaaGykaiaaiYcacaaMi8UaaGjbVlaadkhacqGHsgIRcaaIWaGaey 4kaSIaaGilaiaaysW7cqaHipqEcqGHiiIZcaaIBbGaaGimaiaaiYca caaMi8UaaGOmaiabec8aWjaaiMcaaaa@6100@ . Интеграл сходится равномерно относительно параметров a,b MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadggacaaISa GaaGjcVlaadkgaaaa@3C99@ , удовлетворяющих условию a 2 + b 2 1ε MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadggadaahaa WcbeqaaiaaikdaaaGccqGHRaWkcaWGIbWaaWbaaSqabeaacaaIYaaa amrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGccqWF9P cHcaaIXaGaeyOeI0IaeqyTdugaaa@4BBC@ , a>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadggacaaI+a GaaGimaaaa@3AED@ .

Доказательство. Обозначим интеграл в левой части (2.3) через I(μ;a,b) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8heHKKaaiikaiabeY7a TjaacUdacaaMi8UaaGjbVlaadggacaGGSaGaaGjcVlaaysW7caWGIb Gaaiykaaaa@4F95@ . Для обоснования равномерной сходимости этого интеграла запишем вещественную и мнимую части подынтегрального выражения как сумму произведений f(x,t) g(x,t), где f(x,t)=cosμt MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadAgacaGGOa GaamiEaiaacYcacaWG0bGaaiykaiabg2da9iGacogacaGGVbGaai4C aiabeY7aTjaadshaaaa@43F7@  или sinμt MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiGacohacaGGPb GaaiOBaiabeY7aTjaadshaaaa@3E0C@ , g(x,t) есть вещественная или мнимая часть функции ( a 2 + (ba 2 it) 2 ) (n2)/2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiIcacaWGHb WaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGikaiaadkgacqGHsisl caWGHbWaaOaaaeaacaaIYaaaleqaaOGaamyAaiabgkHiTiaadshaca aIPaWaaWbaaSqabeaacaaIYaaaaOGaaGykamaaCaaaleqabaGaeyOe I0IaaGikaiaad6gacqGHsislcaaIYaGaaGykaiaai+cacaaIYaaaaa aa@4BFC@ , x=(μ,a,b) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadIhacqGH9a qpcaGGOaGaeqiVd0MaaiilaiaaysW7caWGHbGaaiilaiaaysW7caWG IbGaaiykaaaa@43DE@ . Непосредственно устанавливаем, что функция g(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadEgacaaIOa GaamiEaiaaiYcacaWG0bGaaGykaaaa@3D82@  монотонно стремится к нулю по |t| t 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiYhacaWG0b GaaGiFamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGa e8NFQuOaamiDamaaBaaaleaacaaIWaaabeaaaaa@48BE@  равномерно относительно параметров a,b MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadggacaaISa GaaGjbVlaayIW7caWGIbaaaa@3E26@ , удовлетворяющих условию леммы 2.1. Поэтому равномерная сходимость I MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8heHKeaaa@430E@  следует из теоремы 3 в [20, c. 674].

Замена переменных τ=tb MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabes8a0jaai2 dacaWG0bGaeyOeI0IaamOyaaaa@3DDE@  приводит интересующий нас интеграл к виду

I μ;a,b = e iμb e iμτ dτ a 2 + i 2 +τ 2 (n2)/2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8heHK0aaeWaaeaacqaH 8oqBcaaI7aGaaGjcVlaadggacaaISaGaaGjcVlaadkgaaiaawIcaca GLPaaacaaI9aGaamyzamaaCaaaleqabaGaeyOeI0IaamyAaiabeY7a TjaadkgaaaGcdaWdXbqabSqaaiabgkHiTiabg6HiLcqaaiabg6HiLc qdcqGHRiI8aOWaaSaaaeaacaWGLbWaaWbaaSqabeaacqGHsislcaWG PbGaeqiVd0MaeqiXdqhaaOGaamizaiabes8a0bqaamaabmaabaGaam yyamaaCaaaleqabaGaaGOmaaaakiabgUcaRmaabmaabaGaamyAamaa kaaabaGaaGOmaaWcbeaakiabgUcaRiabes8a0bGaayjkaiaawMcaam aaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGa aGikaiaad6gacqGHsislcaaIYaGaaGykaiaai+cacaaIYaaaaaaaki aai6caaaa@742A@  (2.4)

Рассмотрим на плоскости переменной ζ=v+iw MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeA7a6jaai2 dacaWG2bGaey4kaSIaamyAaiaadEhaaaa@3ED0@  положительно ориентированный контур

Γ R = Γ R1 Γ R2 Γ R3 Γ R4 Γ R5 Γ R6 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabfo5ahnaaBa aaleaacaWGsbaabeaakiaai2dacqqHtoWrdaWgaaWcbaGaamOuaiaa igdaaeqaaOGaeyOkIGSaeu4KdC0aaSbaaSqaaiaadkfacaaIYaaabe aakiabgQIiilabfo5ahnaaBaaaleaacaWGsbGaaG4maaqabaGccqGH QicYcqqHtoWrdaWgaaWcbaGaamOuaiaaisdaaeqaaOGaeyOkIGSaeu 4KdC0aaSbaaSqaaiaadkfacaaI1aaabeaakiabgQIiilabfo5ahnaa BaaaleaacaWGsbGaaGOnaaqabaGccaaISaaaaa@57C6@  (2.5)

где

Γ R1 ={v+0i|v[0,R]}, Γ R2 ={R+iw|w[0, 2 ]}, Γ R3 ={v+i 2 |v[R,R]}, Γ R4 ={R+iw|w[ 2 ,0]}, Γ R5 ={v+0i|v[R,0]}, Γ R6 = v+iw= a 2 costsint 1+ sin 2 t +i a 2 cost 1+ sin 2 t t[π/2,π/2] . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaGaeu4KdC 0aaSbaaSqaaiaadkfacaaIXaaabeaakiaai2dacaaI7bGaamODaiab gUcaRiaaicdacaWGPbGaaGjbVlaayIW7caaI8bGaaGjbVlaayIW7ca WG2bGaeyicI4SaaG4waiaaicdacaaISaGaaGjcVlaadkfacaaIDbGa aGyFaiaaiYcacaaMe8UaaGjbVlabfo5ahnaaBaaaleaacaWGsbGaaG OmaaqabaGccaaI9aGaaG4EaiaadkfacqGHRaWkcaWGPbGaam4Daiaa yIW7caaMe8UaaGiFaiaayIW7caaMe8Uaam4DaiabgIGiolaaiUfaca aIWaGaaGilaiaayIW7daGcaaqaaiaaikdaaSqabaGccaaIDbGaaGyF aiaaiYcaaeaacqqHtoWrdaWgaaWcbaGaamOuaiaaiodaaeqaaOGaaG ypaiaaiUhacaWG2bGaey4kaSIaamyAamaakaaabaGaaGOmaaWcbeaa kiaaysW7caaMi8UaaGiFaiaayIW7caaMe8UaamODaiabgIGiolaaiU facaWGsbGaaGilaiaayIW7cqGHsislcaWGsbGaaGyxaiaai2hacaaI SaGaaGjbVlaaysW7cqqHtoWrdaWgaaWcbaGaamOuaiaaisdaaeqaaO GaaGypaiaaiUhacqGHsislcaWGsbGaey4kaSIaamyAaiaadEhacaaM e8UaaGjcVlaaiYhacaaMi8UaaGjbVlaadEhacqGHiiIZcaaIBbWaaO aaaeaacaaIYaaaleqaaOGaaGilaiaayIW7caaIWaGaaGyxaiaai2ha caaISaaabaGaeu4KdC0aaSbaaSqaaiaadkfacaaI1aaabeaakiaai2 dacaaI7bGaamODaiabgUcaRiaaicdacaWGPbGaaGjbVlaayIW7caaI 8bGaaGjcVlaaysW7caWG2bGaeyicI4SaaG4waiabgkHiTiaadkfaca aISaGaaGjcVlaaicdacaaIDbGaaGyFaiaaiYcaaeaacqqHtoWrdaWg aaWcbaGaamOuaiaaiAdaaeqaaOGaaGypamaacmaabaGaamODaiabgU caRiaadMgacaWG3bGaaGypamaalaaabaGaamyyamaakaaabaGaaGOm aaWcbeaakiaayIW7ciGGJbGaai4BaiaacohacaWG0bGaci4CaiaacM gacaGGUbGaamiDaaqaaiaaigdacqGHRaWkdaqfGaqabSqabeaacaaI YaaakeaaciGGZbGaaiyAaiaac6gaaaGaamiDaaaacqGHRaWkcaaMe8 UaamyAaiaayIW7caaMe8+aaqGaaeaadaWcaaqaaiaadggadaGcaaqa aiaaikdaaSqabaGcciGGJbGaai4BaiaacohacaWG0baabaGaaGymai abgUcaRmaavacabeWcbeqaaiaaikdaaOqaaiGacohacaGGPbGaaiOB aaaacaWG0baaaiaaysW7aiaawIa7aiaaysW7caaMi8UaamiDaiabgI GiolaaiUfacqGHsislcqaHapaCcaaIVaGaaGOmaiaaiYcacaaMi8Ua eqiWdaNaaG4laiaaikdacaaIDbaacaGL7bGaayzFaaGaaGOlaaaaaa@060B@

Здесь в обозначениях участков контура порядок перечисления концов для отрезка значений параметра на кривой соответствует нужному направлению обхода участка. Участок Γ R6 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabfo5ahnaaBa aaleaacaWGsbGaaGOnaaqabaaaaa@3BB0@  представляет собой половину лемнискаты Бернулли. Контур (2.5) обходит разрез плоскости MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamrr1ngBPrwtHr hAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8NaHmeaaa@4313@ , выполненный вдоль отрезка [-ia, ia]. Вне этого разреза функция ( a 2 + ζ 2 ) (n2)/2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiIcacaWGHb WaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaeqOTdO3aaWbaaSqabeaa caaIYaaaaOGaaGykamaaCaaaleqabaGaaGikaiaad6gacqGHsislca aIYaGaaGykaiaai+cacaaIYaaaaaaa@44F8@  допускает выделение однозначной аналитической ветви. Указанная ветвь определяется равенством

a 2 + ζ 2 (n2)/2 = ζ+ia n2 ζia n2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaabmaabaGaam yyamaaCaaaleqabaGaaGOmaaaakiabgUcaRiabeA7a6naaCaaaleqa baGaaGOmaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGikaiaad6 gacqGHsislcaaIYaGaaGykaiaai+cacaaIYaaaaOGaaGypamaabmaa baWaaOaaaeaacqaH2oGEcqGHRaWkcaWGPbGaamyyaaWcbeaaaOGaay jkaiaawMcaamaaCaaaleqabaGaamOBaiabgkHiTiaaikdaaaGccaaM i8+aaeWaaeaadaGcaaqaaiabeA7a6jabgkHiTiaadMgacaWGHbaale qaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaWGUbGaeyOeI0IaaGOm aaaakiaaiYcaaaa@5A27@

ζ=ia+r e iϕ ,ϕ π/2,3π/2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeA7a6jaai2 dacaWGPbGaamyyaiabgUcaRiaadkhacaWGLbWaaWbaaSqabeaacaWG PbGaeqy1dygaaOGaaGilaiaaysW7caaMe8UaaGjcVlabew9aMjabgI GiopaabmaabaGaeyOeI0IaeqiWdaNaaG4laiaaikdacaaISaGaaG4m aiabec8aWjaai+cacaaIYaaacaGLOaGaayzkaaGaaGilaaaa@563D@

с выбором для корней главных значений, определяемых условием 1 =1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaakaaabaGaaG ymaaWcbeaakiaai2dacaaIXaaaaa@3AE7@ . Тем самым

F(ζ)= e iμζ ζia n2 ζ+ia n2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadAeacaaIOa GaeqOTdONaaGykaiaai2dadaWcaaqaaiaadwgadaahaaWcbeqaaiab gkHiTiaadMgacqaH8oqBcqaH2oGEaaaakeaadaqadaqaamaakaaaba GaeqOTdONaeyOeI0IaamyAaiaadggaaSqabaaakiaawIcacaGLPaaa daahaaWcbeqaaiaad6gacqGHsislcaaIYaaaaOWaaeWaaeaadaGcaa qaaiabeA7a6jabgUcaRiaadMgacaWGHbaaleqaaaGccaGLOaGaayzk aaWaaWbaaSqabeaacaWGUbGaeyOeI0IaaGOmaaaaaaaaaa@55A1@  (2.6)

также является однозначной аналитической функцией вне [ia,ia] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiUfacqGHsi slcaWGPbGaamyyaiaaiYcacaaMe8UaaGjbVlaayIW7caWGPbGaamyy aiaai2faaaa@4447@  и, в частности, в области, ограниченной контуром Γ R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabfo5ahnaaBa aaleaacaWGsbaabeaaaaa@3AF0@ . Следовательно,

Γ R F(ζ)dζ=0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaapefabeWcba Gaeu4KdC0aaSbaaeaacaWGsbaabeaaaeqaniabgUIiYdGccaWGgbGa aGikaiabeA7a6jaaiMcacaWGKbGaeqOTdONaaGypaiaaicdacaaIUa aaaa@4606@  (2.7)

Нетрудно видеть, что интегралы от функции (2.6) по участкам Γ R2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabfo5ahnaaBa aaleaacaWGsbGaaGOmaaqabaaaaa@3BAC@  и Γ R4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabfo5ahnaaBa aaleaacaWGsbGaaGinaaqabaaaaa@3BAE@  имеют порядки O( R 2n ),R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaad+eacaaIOa GaamOuamaaCaaaleqabaGaaGOmaiabgkHiTiaad6gaaaGccaaIPaGa aGilaiaayIW7caaMe8UaaGjbVlaadkfacqGHsgIRcqGHEisPaaa@47FE@ . Поэтому из (2.7) следует, что при R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadkfacqGHsg IRcqGHEisPaaa@3CBA@  имеет место

Γ R1 e iμζ dζ a 2 + ζ 2 n2 + Γ R5 e iμζ dζ a 2 + ζ 2 n2 + + Γ R6 e iμζ dζ a 2 + ζ 2 n2 + R R e iμ(i 2 +τ) dτ a 2 + (i 2 +τ) 2 n2 =O R 2n . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaWaa8quae qaleaacqqHtoWrdaWgaaqaaiaadkfacaaIXaaabeaaaeqaniabgUIi YdGcdaWcaaqaaiaadwgadaahaaWcbeqaaiabgkHiTiaadMgacqaH8o qBcqaH2oGEaaGccaWGKbGaeqOTdOhabaWaaeWaaeaadaGcaaqaaiaa dggadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcqaH2oGEdaahaaWcbe qaaiaaikdaaaaabeaaaOGaayjkaiaawMcaamaaCaaaleqabaGaamOB aiabgkHiTiaaikdaaaaaaOGaey4kaSYaa8quaeqaleaacqqHtoWrda WgaaqaaiaadkfacaaI1aaabeaaaeqaniabgUIiYdGcdaWcaaqaaiaa dwgadaahaaWcbeqaaiabgkHiTiaadMgacqaH8oqBcqaH2oGEaaGcca WGKbGaeqOTdOhabaWaaeWaaeaadaGcaaqaaiaadggadaahaaWcbeqa aiaaikdaaaGccqGHRaWkcqaH2oGEdaahaaWcbeqaaiaaikdaaaaabe aaaOGaayjkaiaawMcaamaaCaaaleqabaGaamOBaiabgkHiTiaaikda aaaaaOGaey4kaScabaGaey4kaSYaa8quaeqaleaacqqHtoWrdaWgaa qaaiaadkfacaaI2aaabeaaaeqaniabgUIiYdGcdaWcaaqaaiaadwga daahaaWcbeqaaiabgkHiTiaadMgacqaH8oqBcqaH2oGEaaGccaWGKb GaeqOTdOhabaWaaeWaaeaadaGcaaqaaiaadggadaahaaWcbeqaaiaa ikdaaaGccqGHRaWkcqaH2oGEdaahaaWcbeqaaiaaikdaaaaabeaaaO GaayjkaiaawMcaamaaCaaaleqabaGaamOBaiabgkHiTiaaikdaaaaa aOGaey4kaSYaa8qCaeqaleaacaWGsbaabaGaeyOeI0IaamOuaaqdcq GHRiI8aOWaaSaaaeaacaWGLbWaaWbaaSqabeaacqGHsislcaWGPbGa eqiVd0MaaGikaiaadMgadaGcaaqaaiaaikdaaeqaaiabgUcaRiabes 8a0jaaiMcaaaGccaWGKbGaeqiXdqhabaWaaeWaaeaadaGcaaqaaiaa dggadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIOaGaamyAamaaka aabaGaaGOmaaWcbeaakiabgUcaRiabes8a0jaaiMcadaahaaWcbeqa aiaaikdaaaaabeaaaOGaayjkaiaawMcaamaaCaaaleqabaGaamOBai abgkHiTiaaikdaaaaaaOGaaGypaiaad+eadaqadaqaaiaadkfadaah aaWcbeqaaiaaikdacqGHsislcaWGUbaaaaGccaGLOaGaayzkaaGaaG Olaaaaaa@AD22@  (2.8)

Непосредственный анализ показывает, что при вещественных ζ=v MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeA7a6jaai2 dacaWG2baaaa@3C04@  и ζ=v MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeA7a6jaai2 dacqGHsislcaWG2baaaa@3CF1@ , v0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadAhatuuDJX wAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=5Nkfkaaicda aaa@458F@ , функция a 2 + ζ 2 = ζia ζ+ia MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaakaaabaGaam yyamaaCaaaleqabaGaaGOmaaaakiabgUcaRiabeA7a6naaCaaaleqa baGaaGOmaaaaaeqaaOGaaGypamaakaaabaGaeqOTdONaeyOeI0Iaam yAaiaadggaaSqabaGcdaGcaaqaaiabeA7a6jabgUcaRiaadMgacaWG Hbaaleqaaaaa@47F8@  принимает значения противоположных знаков. Поэтому замена переменной v= v ˜ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadAhacaaI9a GaeyOeI0YaaacaaeaacaWG2baacaGLdmaaaaa@3CF1@  дает

Γ R5 e iμζ dζ a 2 + ζ 2 n2 = R 0 e iμv dv a 2 + v 2 n2 = R 0 e iμ v ˜ d v ˜ a 2 + v ˜ 2 n2 = = R 0 e iμ v ˜ d v ˜ ( a 2 + v ˜ 2 ) n2 = 1 n2 0 R e iμv dv a 2 + v 2 n2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaWaa8quae qaleaacqqHtoWrdaWgaaqaaiaadkfacaaI1aaabeaaaeqaniabgUIi YdGcdaWcaaqaaiaadwgadaahaaWcbeqaaiabgkHiTiaadMgacqaH8o qBcqaH2oGEaaGccaWGKbGaeqOTdOhabaWaaeWaaeaadaGcaaqaaiaa dggadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcqaH2oGEdaahaaWcbe qaaiaaikdaaaaabeaaaOGaayjkaiaawMcaamaaCaaaleqabaGaamOB aiabgkHiTiaaikdaaaaaaOGaaGypamaapehabeWcbaGaeyOeI0Iaam Ouaaqaaiaaicdaa0Gaey4kIipakmaalaaabaGaamyzamaaCaaaleqa baGaeyOeI0IaamyAaiabeY7aTjaadAhaaaGccaWGKbGaamODaaqaam aabmaabaWaaOaaaeaacaWGHbWaaWbaaSqabeaacaaIYaaaaOGaey4k aSIaamODamaaCaaaleqabaGaaGOmaaaaaeqaaaGccaGLOaGaayzkaa WaaWbaaSqabeaacaWGUbGaeyOeI0IaaGOmaaaaaaGccaaI9aWaa8qC aeqaleaacaWGsbaabaGaaGimaaqdcqGHRiI8aOWaaSaaaeaacaWGLb WaaWbaaSqabeaacaWGPbGaeqiVd02aaacaaeaacaWG2baacaGLdmaa aaGcdaqadaqaaiabgkHiTiaadsgadaaiaaqaaiaadAhaaiaawoWaaa GaayjkaiaawMcaaaqaamaabmaabaWaaOaaaeaacaWGHbWaaWbaaSqa beaacaaIYaaaaOGaey4kaSYaaeWaaeaacqGHsisldaaiaaqaaiaadA haaiaawoWaaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaeqa aaGccaGLOaGaayzkaaWaaWbaaSqabeaacaWGUbGaeyOeI0IaaGOmaa aaaaGccaaI9aaabaGaaGypamaapehabeWcbaGaamOuaaqaaiaaicda a0Gaey4kIipakmaalaaabaGaamyzamaaCaaaleqabaGaamyAaiabeY 7aTnaaGaaabaGaamODaaGaay5adaaaaOWaaeWaaeaacqGHsislcaWG KbWaaacaaeaacaWG2baacaGLdmaaaiaawIcacaGLPaaaaeaacaaIOa GaeyOeI0YaaOaaaeaacaWGHbWaaWbaaSqabeaacaaIYaaaaOGaey4k aSYaaacaaeaacaWG2baacaGLdmaadaahaaWcbeqaaiaaikdaaaaabe aakiaaiMcadaahaaWcbeqaaiaad6gacqGHsislcaaIYaaaaaaakiaa i2dadaqadaqaaiabgkHiTiaaigdaaiaawIcacaGLPaaadaahaaWcbe qaaiaad6gacqGHsislcaaIYaaaaOWaa8qCaeqaleaacaaIWaaabaGa amOuaaqdcqGHRiI8aOWaaSaaaeaacaWGLbWaaWbaaSqabeaacaWGPb GaeqiVd0MaamODaaaakiaadsgacaWG2baabaWaaeWaaeaadaGcaaqa aiaadggadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWG2bWaaWbaaS qabeaacaaIYaaaaaqabaaakiaawIcacaGLPaaadaahaaWcbeqaaiaa d6gacqGHsislcaaIYaaaaaaakiaai6caaaaa@B965@

Следовательно,

ΓR1eiμζdζa2+ζ2n2+ΓR5eiμζdζa2+ζ2n2==0Reiμvdva2+v2n2+(-1)n-20Reiμvdva2+v2n2==0Reiμv+1neiμvdva2+v2n2==1n+10Rcosμvdva2+v2n2+i1n10Rsinμvdva2+v2n2. (2.9)

Обратимся к интегралу по участку лемнискаты Γ R6 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabfo5ahnaaBa aaleaacaWGsbGaaGOnaaqabaaaaa@3BB0@ . Обозначим r 1 =|ζia| MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadkhadaWgaa WcbaGaaGymaaqabaGccaaI9aGaaGiFaiabeA7a6jabgkHiTiaadMga caWGHbGaaGiFaaaa@41BE@ , r 2 =|ζ+ia| MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadkhadaWgaa WcbaGaaGOmaaqabaGccaaI9aGaaGiFaiabeA7a6jabgUcaRiaadMga caWGHbGaaGiFaaaa@41B4@  и ϕ 1 =arg(ζia) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabew9aMnaaBa aaleaacaaIXaaabeaakiaai2daciGGHbGaaiOCaiaacEgacaaIOaGa eqOTdONaeyOeI0IaamyAaiaadggacaaIPaaaaa@44B0@ , ϕ 2 =arg(ζ+ia) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabew9aMnaaBa aaleaacaaIYaaabeaakiaai2daciGGHbGaaiOCaiaacEgacaaIOaGa eqOTdONaey4kaSIaamyAaiaadggacaaIPaaaaa@44A6@ . Поскольку при ζ Γ R6 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeA7a6jabgI Giolabfo5ahnaaBaaaleaacaWGsbGaaGOnaaqabaaaaa@3EF1@  будет

ζ=a 2 sintcost 1+ sin 2 t +i cost 1+ sin 2 t , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeA7a6jaai2 dacaWGHbWaaOaaaeaacaaIYaaaleqaaOWaaeWaaeaadaWcaaqaaiGa cohacaGGPbGaaiOBaiaadshaciGGJbGaai4BaiaacohacaWG0baaba GaaGymaiabgUcaRmaavacabeWcbeqaaiaaikdaaOqaaiGacohacaGG PbGaaiOBaaaacaWG0baaaiabgUcaRiaadMgacaaMi8+aaSaaaeaaci GGJbGaai4BaiaacohacaWG0baabaGaaGymaiabgUcaRmaavacabeWc beqaaiaaikdaaOqaaiGacohacaGGPbGaaiOBaaaacaWG0baaaaGaay jkaiaawMcaaiaaiYcaaaa@5AF3@

величины ϕ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabew9aMnaaBa aaleaacaaIXaaabeaaaaa@3B34@ , ϕ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabew9aMnaaBa aaleaacaaIYaaabeaaaaa@3B35@ , а вместе с ними и e i(n2)( ϕ 1 + ϕ 2 )/2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadwgadaahaa WcbeqaaiaadMgacaaIOaGaamOBaiabgkHiTiaaikdacaaIPaGaaGik aiabew9aMnaaBaaabaGaaGymaaqabaGaey4kaSIaeqy1dy2aaSbaae aacaaIYaaabeaacaaIPaGaaG4laiaaikdaaaaaaa@4790@ , не зависят ни от a, ни от μ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeY7aTbaa@3A3B@ . При этом | e i(n2)( ϕ 1 + ϕ 2 )/2 |=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiYhacaWGLb WaaWbaaSqabeaacaWGPbGaaGikaiaad6gacqGHsislcaaIYaGaaGyk aiaaiIcacqaHvpGzdaWgaaqaaiaaigdaaeqaaiabgUcaRiabew9aMn aaBaaabaGaaGOmaaqabaGaaGykaiaai+cacaaIYaaaaOGaaGiFaiaa i2dacaaIXaaaaa@4B28@ . Кроме того, по известному свойству лемнискаты справедливо r 1 r 2 = r 1 r 2 = a 2 =a MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaakaaabaGaam OCamaaBaaaleaacaaIXaaabeaaaeqaaOWaaOaaaeaacaWGYbWaaSba aSqaaiaaikdaaeqaaaqabaGccaaI9aWaaOaaaeaacaWGYbWaaSbaaS qaaiaaigdaaeqaaOGaamOCamaaBaaaleaacaaIYaaabeaaaeqaaOGa aGypamaakaaabaGaamyyamaaCaaaleqabaGaaGOmaaaaaeqaaOGaaG ypaiaadggaaaa@457B@  при a > 0. Поэтому

Γ R6 e iμζ dζ a 2 + ζ 2 n2 = π/2 π/2 e iμa 2 sintcost 1+ sin 2 t +i cost 1+ sin 2 t a 2 13 sin 2 t+i sin 3 t3sint 1+ sin 2 t 2 dt a n2 e i(n2)( ϕ 1 + ϕ 2 )/2 = = 2 μ a (n3)/2 π/2 π/2 e iμa 2 sintcost 1+ sin 2 t +i cost 1+ sin 2 t 13 sin 2 t+i sin 3 t3sint 1+ sin 2 t 2 dt μa (n3)/2 e i(n2)( ϕ 1 + ϕ 2 )/2 = = 2 μ a (n3)/2 I Γ6 μa , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaWaa8quae qaleaacqqHtoWrdaWgaaqaaiaadkfacaaI2aaabeaaaeqaniabgUIi YdGcdaWcaaqaaiaadwgadaahaaWcbeqaaiabgkHiTiaadMgacqaH8o qBcqaH2oGEaaGccaWGKbGaeqOTdOhabaWaaeWaaeaadaGcaaqaaiaa dggadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcqaH2oGEdaahaaWcbe qaaiaaikdaaaaabeaaaOGaayjkaiaawMcaamaaCaaaleqabaGaamOB aiabgkHiTiaaikdaaaaaaOGaaGypamaapehabeWcbaGaeyOeI0Iaeq iWdaNaaG4laiaaikdaaeaacqaHapaCcaaIVaGaaGOmaaqdcqGHRiI8 aOWaaSaaaeaacaWGLbWaaWbaaSqabeaacqGHsislcaWGPbGaeqiVd0 MaamyyamaakaaabaGaaGOmaaqabaWaaeWaaeaadaWcaaqaaiGacoha caGGPbGaaiOBaiaadshaciGGJbGaai4BaiaacohacaWG0baabaGaaG ymaiabgUcaRmaavacabeqabeaacaaIYaaabaGaci4CaiaacMgacaGG UbaaaiaadshaaaGaey4kaSIaamyAaiaayIW7daWcaaqaaiGacogaca GGVbGaai4CaiaadshaaeaacaaIXaGaey4kaSYaaubiaeqabeqaaiaa ikdaaeaaciGGZbGaaiyAaiaac6gaaaGaamiDaaaaaiaawIcacaGLPa aaaaGccaaMi8UaamyyamaakaaabaGaaGOmaaWcbeaakiaayIW7daWc aaqaaiaaigdacqGHsislcaaIZaWaaubiaeqaleqabaGaaGOmaaGcba Gaci4CaiaacMgacaGGUbaaaiaadshacqGHRaWkcaWGPbWaaeWaaeaa daqfGaqabSqabeaacaaIZaaakeaaciGGZbGaaiyAaiaac6gaaaGaam iDaiabgkHiTiaaiodaciGGZbGaaiyAaiaac6gacaWG0baacaGLOaGa ayzkaaaabaWaaeWaaeaacaaIXaGaey4kaSYaaubiaeqaleqabaGaaG OmaaGcbaGaci4CaiaacMgacaGGUbaaaiaadshaaiaawIcacaGLPaaa daahaaWcbeqaaiaaikdaaaaaaOGaaGjcVlaadsgacaWG0baabaGaam yyamaaCaaaleqabaGaamOBaiabgkHiTiaaikdaaaGccaWGLbWaaWba aSqabeaacaWGPbGaaGikaiaad6gacqGHsislcaaIYaGaaGykaiaaiI cacqaHvpGzdaWgaaqaaiaaigdaaeqaaiabgUcaRiabew9aMnaaBaaa baGaaGOmaaqabaGaaGykaiaai+cacaaIYaaaaaaakiaai2daaeaaca aI9aWaaOaaaeaacaaIYaaaleqaaOWaaeWaaeaadaWcaaqaaiabeY7a TbqaaiaadggaaaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIOaGaam OBaiabgkHiTiaaiodacaaIPaGaaG4laiaaikdaaaGcdaWdXbqabSqa aiabgkHiTiabec8aWjaai+cacaaIYaaabaGaeqiWdaNaaG4laiaaik daa0Gaey4kIipakmaalaaabaGaamyzamaaCaaaleqabaGaeyOeI0Ia amyAaiabeY7aTjaadggadaGcaaqaaiaaikdaaeqaamaabmaabaWaaS aaaeaaciGGZbGaaiyAaiaac6gacaWG0bGaci4yaiaac+gacaGGZbGa amiDaaqaaiaaigdacqGHRaWkdaqfGaqabeqabaGaaGOmaaqaaiGaco hacaGGPbGaaiOBaaaacaWG0baaaiabgUcaRiaadMgacaaMi8+aaSaa aeaaciGGJbGaai4BaiaacohacaWG0baabaGaaGymaiabgUcaRmaava cabeqabeaacaaIYaaabaGaci4CaiaacMgacaGGUbaaaiaadshaaaaa caGLOaGaayzkaaaaaOGaaGjcVpaalaaabaGaaGymaiabgkHiTiaaio dadaqfGaqabSqabeaacaaIYaaakeaaciGGZbGaaiyAaiaac6gaaaGa amiDaiabgUcaRiaadMgadaqadaqaamaavacabeWcbeqaaiaaiodaaO qaaiGacohacaGGPbGaaiOBaaaacaWG0bGaeyOeI0IaaG4maiGacoha caGGPbGaaiOBaiaadshaaiaawIcacaGLPaaaaeaadaqadaqaaiaaig dacqGHRaWkdaqfGaqabSqabeaacaaIYaaakeaaciGGZbGaaiyAaiaa c6gaaaGaamiDaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaa GccaaMi8UaamizaiaadshaaeaadaqadaqaaiabeY7aTjaadggaaiaa wIcacaGLPaaadaahaaWcbeqaaiaaiIcacaWGUbGaeyOeI0IaaG4mai aaiMcacaaIVaGaaGOmaaaakiaadwgadaahaaWcbeqaaiaadMgacaaI OaGaamOBaiabgkHiTiaaikdacaaIPaGaaGikaiabew9aMnaaBaaaba GaaGymaaqabaGaey4kaSIaeqy1dy2aaSbaaeaacaaIYaaabeaacaaI PaGaaG4laiaaikdaaaaaaOGaaGypaaqaaiaai2dacqGHsisldaGcaa qaaiaaikdaaSqabaGcdaqadaqaamaalaaabaGaeqiVd0gabaGaamyy aaaaaiaawIcacaGLPaaadaahaaWcbeqaaiaaiIcacaWGUbGaeyOeI0 IaaG4maiaaiMcacaaIVaGaaGOmaaaatuuDJXwAK1uy0HwmaeHbfv3y SLgzG0uy0Hgip5wzaGqbaOGae8heHK0aaSbaaSqaaiabfo5ahjaaiA daaeqaaOWaaeWaaeaacqaH8oqBcaWGHbaacaGLOaGaayzkaaGaaGil aaaaaa@4D2D@

где обозначено

I Γ6 s = 1 s (n3)/2 π/2 π/2 e is 2 sintcost 1+ sin 2 t +i cost 1+ sin 2 t 13 sin 2 t+i sin 3 t3sint 1+ sin 2 t 2 dt e i(n2)( ϕ 1 + ϕ 2 )/2 ,s\{0}. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8heHK0aaSbaaSqaaiab fo5ahjaaiAdaaeqaaOWaaeWaaeaacaWGZbaacaGLOaGaayzkaaGaaG ypamaalaaabaGaaGymaaqaaiaadohadaahaaWcbeqaaiaaiIcacaWG UbGaeyOeI0IaaG4maiaaiMcacaaIVaGaaGOmaaaaaaGcdaWdXbqabS qaaiabgkHiTiabec8aWjaai+cacaaIYaaabaGaeqiWdaNaaG4laiaa ikdaa0Gaey4kIipakmaalaaabaGaamyzamaaCaaaleqabaGaeyOeI0 IaamyAaiaadohadaGcaaqaaiaaikdaaeqaamaabmaabaWaaSaaaeaa ciGGZbGaaiyAaiaac6gacaWG0bGaci4yaiaac+gacaGGZbGaamiDaa qaaiaaigdacqGHRaWkdaqfGaqabeqabaGaaGOmaaqaaiGacohacaGG PbGaaiOBaaaacaWG0baaaiabgUcaRiaadMgacaaMi8+aaSaaaeaaci GGJbGaai4BaiaacohacaWG0baabaGaaGymaiabgUcaRmaavacabeqa beaacaaIYaaabaGaci4CaiaacMgacaGGUbaaaiaadshaaaaacaGLOa GaayzkaaaaaOGaaGjcVpaalaaabaGaaGymaiabgkHiTiaaiodadaqf GaqabSqabeaacaaIYaaakeaaciGGZbGaaiyAaiaac6gaaaGaamiDai abgUcaRiaadMgadaqadaqaamaavacabeWcbeqaaiaaiodaaOqaaiGa cohacaGGPbGaaiOBaaaacaWG0bGaeyOeI0IaaG4maiGacohacaGGPb GaaiOBaiaadshaaiaawIcacaGLPaaaaeaadaqadaqaaiaaigdacqGH RaWkdaqfGaqabSqabeaacaaIYaaakeaaciGGZbGaaiyAaiaac6gaaa GaamiDaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaaGccaaM i8UaamizaiaadshaaeaacaWGLbWaaWbaaSqabeaacaWGPbGaaGikai aad6gacqGHsislcaaIYaGaaGykaiaaiIcacqaHvpGzdaWgaaqaaiaa igdaaeqaaiabgUcaRiabew9aMnaaBaaabaGaaGOmaaqabaGaaGykai aai+cacaaIYaaaaaaakiaaiYcacaaMf8Uaam4CaiabgIGioprr1ngB PrwtHrhAYaqehuuDJXwAKbstHrhAGq1DVbacgaGae4NaHmKaaiixai aaiUhacaaIWaGaaGyFaiaai6caaaa@C1C6@

 

Заметим, что интеграл в правой части последнего равенства есть функция, аналитическая при всех s MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadohacqGHii IZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=jqi dbaa@458F@ , включая точку s = 0. Поэтому | r (n3)/2 I Γ6 (r e iψ )|=O(1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiYhacaWGYb WaaWbaaSqabeaacaaIOaGaamOBaiabgkHiTiaaiodacaaIPaGaaG4l aiaaikdaaaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiu aakiab=brijnaaBaaaleaacqqHtoWrcaaI2aaabeaakiaaiIcacaWG YbGaamyzamaaCaaaleqabaGaamyAaiabeI8a5baakiaaiMcacaaI8b GaaGypaiaad+eacaaIOaGaaGymaiaaiMcaaaa@5811@ , r0+,ψ[0,2π) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadkhacqGHsg IRcaaIWaGaey4kaSIaaGilaiaayIW7cqaHipqEcqGHiiIZcaaIBbGa aGimaiaaiYcacaaMi8UaaGOmaiabec8aWjaaiMcaaaa@49B0@ .

Перейдем в (2.8) к пределу при R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadkfacqGHsg IRcqGHEisPaaa@3CBA@ . С учетом (2.9) мы получим

1 n +1 0 + cosμvdv a 2 + v 2 n2 +i 1 n 1 0 + sinμvdv a 2 + v 2 n2 2 μ a (n3)/2 I Γ6 (μa) e μ 2 + e iμτ dτ a 2 + i 2 +τ 2 n2 =0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaWaaeWaae aadaqadaqaaiabgkHiTiaaigdaaiaawIcacaGLPaaadaahaaWcbeqa aiaad6gaaaGccqGHRaWkcaaIXaaacaGLOaGaayzkaaWaa8qCaeqale aacaaIWaaabaGaey4kaSIaeyOhIukaniabgUIiYdGcdaWcaaqaaiGa cogacaGGVbGaai4CaiabeY7aTjaadAhacaaMi8UaamizaiaadAhaae aadaqadaqaamaakaaabaGaamyyamaaCaaaleqabaGaaGOmaaaakiab gUcaRiaadAhadaahaaWcbeqaaiaaikdaaaaabeaaaOGaayjkaiaawM caamaaCaaaleqabaGaamOBaiabgkHiTiaaikdaaaaaaOGaey4kaSIa amyAamaabmaabaWaaeWaaeaacqGHsislcaaIXaaacaGLOaGaayzkaa WaaWbaaSqabeaacaWGUbaaaOGaeyOeI0IaaGymaaGaayjkaiaawMca amaapehabeWcbaGaaGimaaqaaiabgUcaRiabg6HiLcqdcqGHRiI8aO WaaSaaaeaaciGGZbGaaiyAaiaac6gacqaH8oqBcaWG2bGaaGjcVlaa dsgacaWG2baabaWaaeWaaeaadaGcaaqaaiaadggadaahaaWcbeqaai aaikdaaaGccqGHRaWkcaWG2bWaaWbaaSqabeaacaaIYaaaaaqabaaa kiaawIcacaGLPaaadaahaaWcbeqaaiaad6gacqGHsislcaaIYaaaaa aakiabgkHiTaqaaiabgkHiTmaakaaabaGaaGOmaaWcbeaakmaabmaa baWaaSaaaeaacqaH8oqBaeaacaWGHbaaaaGaayjkaiaawMcaamaaCa aaleqabaGaaGikaiaad6gacqGHsislcaaIZaGaaGykaiaai+cacaaI Yaaaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGccq WFqessdaWgaaWcbaGaeu4KdCKaaGOnaaqabaGccaaIOaGaeqiVd0Ma amyyaiaaiMcacqGHsislcaWGLbWaaWbaaSqabeaacqaH8oqBdaGcaa qaaiaaikdaaeqaaaaakmaapehabeWcbaGaeyOeI0IaeyOhIukabaGa ey4kaSIaeyOhIukaniabgUIiYdGcdaWcaaqaaiaadwgadaahaaWcbe qaaiabgkHiTiaadMgacqaH8oqBcqaHepaDaaGccaWGKbGaeqiXdqha baWaaeWaaeaadaGcaaqaaiaadggadaahaaWcbeqaaiaaikdaaaGccq GHRaWkdaqadaqaaiaadMgadaGcaaqaaiaaikdaaSqabaGccqGHRaWk cqaHepaDaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaabeaaaO GaayjkaiaawMcaamaaCaaaleqabaGaamOBaiabgkHiTiaaikdaaaaa aOGaaGypaiaaicdacaaIUaaaaaa@BB6F@  (2.10)

Первый из интегралов в (2.10) равен

π μ 2a (n3)/2 Γ n2 2 1 K (n3)/2 μa , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaakaaabaGaeq iWdahaleqaaOWaaeWaaeaadaWcaaqaaiabeY7aTbqaaiaaikdacaWG HbaaaaGaayjkaiaawMcaamaaCaaaleqabaGaaGikaiaad6gacqGHsi slcaaIZaGaaGykaiaai+cacaaIYaaaaOWaamWaaeaacqqHtoWrdaqa daqaamaalaaabaGaamOBaiabgkHiTiaaikdaaeaacaaIYaaaaaGaay jkaiaawMcaaaGaay5waiaaw2faamaaCaaaleqabaGaeyOeI0IaaGym aaaakiaayIW7caWGlbWaaSbaaSqaaiaaiIcacaWGUbGaeyOeI0IaaG 4maiaaiMcacaaIVaGaaGOmaaqabaGcdaqadaqaaiabeY7aTjaadgga aiaawIcacaGLPaaacaaISaaaaa@5C19@

второй равен

π 2 μ 2a (n3)/2 Γ 4n 2 I (n3)/2 μa L (3n)/2 μa MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaalaaabaWaaO aaaeaacqaHapaCaSqabaaakeaacaaIYaaaamaabmaabaWaaSaaaeaa cqaH8oqBaeaacaaIYaGaamyyaaaaaiaawIcacaGLPaaadaahaaWcbe qaaiaaiIcacaWGUbGaeyOeI0IaaG4maiaaiMcacaaIVaGaaGOmaaaa kiabfo5ahnaabmaabaWaaSaaaeaacaaI0aGaeyOeI0IaamOBaaqaai aaikdaaaaacaGLOaGaayzkaaWaaeWaaeaacaWGjbWaaSbaaSqaaiaa iIcacaWGUbGaeyOeI0IaaG4maiaaiMcacaaIVaGaaGOmaaqabaGcda qadaqaaiabeY7aTjaadggaaiaawIcacaGLPaaacqGHsislcaWHmbWa aSbaaSqaaiaaiIcacaaIZaGaeyOeI0IaamOBaiaaiMcacaaIVaGaaG OmaaqabaGcdaqadaqaaiabeY7aTjaadggaaiaawIcacaGLPaaaaiaa wIcacaGLPaaaaaa@63EA@

(см. [21, c. 167, 262]). Здесь I ν (s) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadMeadaWgaa WcbaGaeqyVd4gabeaakiaaiIcacaWGZbGaaGykaaaa@3D9E@ , K ν (s) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadUeadaWgaa WcbaGaeqyVd4gabeaakiaaiIcacaWGZbGaaGykaaaa@3DA0@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3794@  модифицированные функции Бесселя, L ν (s) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaahYeadaWgaa WcbaGaeqyVd4gabeaakiaaiIcacaWGZbGaaGykaaaa@3DA5@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3794@  модифицированная функция Струве. Заметим, что функции K (n3)/2 (s) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadUeadaWgaa WcbaGaaGikaiaad6gacqGHsislcaaIZaGaaGykaiaai+cacaaIYaaa beaakiaaiIcacaWGZbGaaGykaaaa@415F@  и I (n3)/2 (s) L (3n)/2 (s) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadMeadaWgaa WcbaGaaGikaiaad6gacqGHsislcaaIZaGaaGykaiaai+cacaaIYaaa beaakiaaiIcacaWGZbGaaGykaiabgkHiTiaahYeadaWgaaWcbaGaaG ikaiaaiodacqGHsislcaWGUbGaaGykaiaai+cacaaIYaaabeaakiaa iIcacaWGZbGaaGykaaaa@4B29@  обе аналитические при s\{0} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadohacqGHii IZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=jqi djaacYfacaaI7bGaaGimaiaai2haaaa@4935@  и удовлетворяют условиям

| r (n3)/2 K (n3)/2 (r e iψ )|=O(1), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiYhacaWGYb WaaWbaaSqabeaacaaIOaGaamOBaiabgkHiTiaaiodacaaIPaGaaG4l aiaaikdaaaGccaWGlbWaaSbaaSqaaiaaiIcacaWGUbGaeyOeI0IaaG 4maiaaiMcacaaIVaGaaGOmaaqabaGccaaIOaGaamOCaiaadwgadaah aaWcbeqaaiaadMgacqaHipqEaaGccaaIPaGaaGiFaiaai2dacaWGpb GaaGikaiaaigdacaaIPaGaaGilaaaa@525D@

r (n3)/2 I (n3)/2 r e iψ L (3n)/2 r e iψ =O(1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaaemaabaGaam OCamaaCaaaleqabaGaaGikaiaad6gacqGHsislcaaIZaGaaGykaiaa i+cacaaIYaaaaOWaaeWaaeaacaWGjbWaaSbaaSqaaiaaiIcacaWGUb GaeyOeI0IaaG4maiaaiMcacaaIVaGaaGOmaaqabaGcdaqadaqaaiaa dkhacaWGLbWaaWbaaSqabeaacaWGPbGaeqiYdKhaaaGccaGLOaGaay zkaaGaeyOeI0IaaCitamaaBaaaleaacaaIOaGaaG4maiabgkHiTiaa d6gacaaIPaGaaG4laiaaikdaaeqaaOWaaeWaaeaacaWGYbGaamyzam aaCaaaleqabaGaamyAaiabeI8a5baaaOGaayjkaiaawMcaaaGaayjk aiaawMcaaaGaay5bSlaawIa7aiaai2dacaWGpbGaaGikaiaaigdaca aIPaaaaa@6234@

при r0+,ψ[0,2π) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadkhacqGHsg IRcaaIWaGaey4kaSIaaGilaiabeI8a5jabgIGiolaaiUfacaaIWaGa aGilaiaayIW7caaIYaGaeqiWdaNaaGykaaaa@481F@ . Поэтому

+ e iμτ dτ a 2 + (i 2 +τ) 2 n2 =C(n) e μ 2 μ a (n3)/2 V μa , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaapehabeWcba GaeyOeI0IaeyOhIukabaGaey4kaSIaeyOhIukaniabgUIiYdGcdaWc aaqaaiaadwgadaahaaWcbeqaaiabgkHiTiaadMgacqaH8oqBcqaHep aDaaGccaWGKbGaeqiXdqhabaWaaeWaaeaadaGcaaqaaiaadggadaah aaWcbeqaaiaaikdaaaGccqGHRaWkcaaIOaGaamyAamaakaaabaGaaG OmaaWcbeaakiabgUcaRiabes8a0jaaiMcadaahaaWcbeqaaiaaikda aaaabeaaaOGaayjkaiaawMcaamaaCaaaleqabaGaamOBaiabgkHiTi aaikdaaaaaaOGaeyypa0Jaam4qaiaaiIcacaWGUbGaaGykaiaadwga daahaaWcbeqaaiabgkHiTiabeY7aTnaakaaabaGaaGOmaaqabaaaaO WaaeWaaeaadaWcaaqaaiabeY7aTbqaaiaadggaaaaacaGLOaGaayzk aaWaaWbaaSqabeaacaaIOaGaamOBaiabgkHiTiaaiodacaaIPaGaaG 4laiaaikdaaaGccaWGwbWaaeWaaeaacqaH8oqBcaWGHbaacaGLOaGa ayzkaaGaaGilaaaa@6F23@

где V(s) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3794@  функция аналитическая при s\{0} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadohacqGHii IZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=jqi djaacYfacaaI7bGaaGimaiaai2haaaa@4935@  и удовлетворяющая условию | r (n3)/2 V(r e iψ )|=O(1),r0+,ψ[0,2π) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiYhacaWGYb WaaWbaaSqabeaacaaIOaGaamOBaiabgkHiTiaaiodacaaIPaGaaG4l aiaaikdaaaGccaWGwbGaaGikaiaadkhacaWGLbWaaWbaaSqabeaaca WGPbGaeqiYdKhaaOGaaGykaiaaiYhacaaI9aGaam4taiaaiIcacaaI XaGaaGykaiaaiYcacaaMi8UaamOCaiabgkziUkaaicdacqGHRaWkca aISaGaeqiYdKNaeyicI4SaaG4waiaaicdacaaISaGaaGjcVlaaikda cqaHapaCcaaIPaaaaa@5DE6@   | r (n3)/2 V(r e iψ )|=O(1),r0+,ψ[0,2π) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiYhacaWGYb WaaWbaaSqabeaacaaIOaGaamOBaiabgkHiTiaaiodacaaIPaGaaG4l aiaaikdaaaGccaWGwbGaaGikaiaadkhacaWGLbWaaWbaaSqabeaaca WGPbGaeqiYdKhaaOGaaGykaiaaiYhacaaI9aGaam4taiaaiIcacaaI XaGaaGykaiaaiYcacaaMi8UaamOCaiabgkziUkaaicdacqGHRaWkca aISaGaeqiYdKNaeyicI4SaaG4waiaaicdacaaISaGaaGjcVlaaikda cqaHapaCcaaIPaaaaa@5DE6@ . Окончательно с учетом (2.4) получаем

I(μ;a,b)= e iμt dt ( a 2 + (bi 2 t) 2 ) (n2)/2 = =C(n) e μ 2 e iμb μ a (n3)/2 V(μa),μ\{0}. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaWefv3ySL gznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFqesscaaIOaGa eqiVd0MaaG4oaiaayIW7caWGHbGaaGilaiaayIW7caWGIbGaaGykai aai2dadaWdXbqabSqaaiabgkHiTiabg6HiLcqaaiabg6HiLcqdcqGH RiI8aOWaaSaaaeaacaWGLbWaaWbaaSqabeaacqGHsislcaWGPbGaeq iVd0MaamiDaaaakiaadsgacaWG0baabaGaaGikaiaadggadaahaaWc beqaaiaaikdaaaGccqGHRaWkcaaIOaGaamOyaiabgkHiTiaadMgada GcaaqaaiaaikdaaSqabaGccqGHsislcaWG0bGaaGykamaaCaaaleqa baGaaGOmaaaakiaaiMcadaahaaWcbeqaaiaaiIcacaWGUbGaeyOeI0 IaaGOmaiaaiMcacaaIVaGaaGOmaaaaaaGccaaI9aaabaGaaGypaiaa doeacaaIOaGaamOBaiaaiMcacaWGLbWaaWbaaSqabeaacqGHsislcq aH8oqBdaGcaaqaaiaaikdaaeqaaaaakiaadwgadaahaaWcbeqaaiab gkHiTiaadMgacqaH8oqBcaWGIbaaaOWaaeWaaeaadaWcaaqaaiabeY 7aTbqaaiaadggaaaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIOaGa amOBaiabgkHiTiaaiodacaaIPaGaaG4laiaaikdaaaGccaWGwbGaaG ikaiabeY7aTjaadggacaaIPaGaaGilaiaayIW7caaMi8UaaGjbVlaa ysW7cqaH8oqBcqGHiiIZtuuDJXwAK1uy0HMmaeXbfv3ySLgzG0uy0H giuD3BaGGbaiab+1risjaacYfacaaI7bGaaGimaiaai2hacaaIUaaa aaa@A3C9@

Лемма 2.1 доказана.

Заметим, что функция V многозначна, но имеет однозначную ветвь на комплексной плоскости с разрезом вдоль луча iR+.

Доказательство теоремы 2.1. Обозначим

g v =f 0,,0,v = D h(x)u(x)dx x 2 + v x n 2 (n2)/2 , v >1ε. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadEgadaqada qaaiaadAhaaiaawIcacaGLPaaacaaI9aGaamOzamaabmaabaGaaGim aiaaiYcacqWIMaYscaaISaGaaGimaiaaiYcacaWG2baacaGLOaGaay zkaaGaaGypamaapefabeWcbaGaamiraaqab0Gaey4kIipakmaalaaa baGaamiAaiaaiIcacaWG4bGaaGykaiaadwhacaaIOaGaamiEaiaaiM cacaWGKbGaamiEaaqaamaabmaabaWaaqWaaeaaceWG4bGbauaaaiaa wEa7caGLiWoadaahaaWcbeqaaiaaikdaaaGccqGHRaWkdaqadaqaai aadAhacqGHsislcaWG4bWaaSbaaSqaaiaad6gaaeqaaaGccaGLOaGa ayzkaaWaaWbaaSqabeaacaaIYaaaaaGccaGLOaGaayzkaaWaaWbaaS qabeaacaaIOaGaamOBaiabgkHiTiaaikdacaaIPaGaaG4laiaaikda aaaaaOGaaGilaiaaysW7daabdaqaaiaadAhaaiaawEa7caGLiWoaca aI+aGaaGymaiabgkHiTiabew7aLjaai6caaaa@7058@  (2.11)

Ввиду вещественной аналитичности функции g при v>1ε MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadAhacaaI+a GaaGymaiabgkHiTiabew7aLbaa@3D97@ , указанная функция допускает однозначное аналитическое продолжение в окрестность луча {ζ=v+iw|v>1ε,w=0} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiUhacqaH2o GEcaaI9aGaamODaiabgUcaRiaadMgacaWG3bGaeyicI48efv3ySLgz nfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFceYqcaaMe8UaaG jcVlaaiYhacaaMi8UaaGjbVlaadAhacaaI+aGaaGymaiabgkHiTiab ew7aLjaaiYcacaaMi8Uaam4Daiaai2dacaaIWaGaaGyFaaaa@5E06@ . Это продолжение соответствует выбору ветви квадратного корня, для которой 1 =1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaakaaabaGaaG ymaaWcbeaakiaai2dacaaIXaaaaa@3AE7@ . Функцию g далее можем с сохранением однозначности аналитически продолжить вдоль дуг {v e it |t(0,π)} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiUhacaWG2b GaamyzamaaCaaaleqabaGaamyAaiaadshaaaGccaaMe8UaaGjcVlaa iYhacaaMi8UaaGjbVlaadshacqGHiiIZcaaIOaGaaGimaiaaiYcacq aHapaCcaaIPaGaaGyFaaaa@4CE5@ , v>1ε MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadAhacaaI+a GaaGymaiabgkHiTiabew7aLbaa@3D97@ , в область

Q= ζ=v+iw|w>0 \ ζ||ζ|1ε . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadgfacaaI9a WaaiWaaeaacqaH2oGEcaaI9aGaamODaiabgUcaRiaadMgacaWG3bGa eyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacq WFceYqcaaMe8UaaGjbVlaayIW7caaI8bGaaGjcVlaaysW7caaMe8Ua am4Daiaai6dacaaIWaaacaGL7bGaayzFaaGaaiixamaacmaabaGaeq OTdONaeyicI4Sae8NaHmKaaGjbVlaayIW7caaI8bGaaGjcVlaaiYha cqaH2oGEcaaMe8UaaGjbVlaaiYhacaaMe8UaaGjbVlabgsMiJkaaig dacqGHsislcqaH1oqzaiaawUhacaGL9baacaaIUaaaaa@7835@

Однозначность такого продолжения определяется тем, что для точек ζ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeA7a6baa@3A42@  этих дуг при всех x=( x , x n ) D ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadIhacaaI9a GaaGikaiqadIhagaqbaiaaiYcacaWG4bWaaSbaaSqaaiaad6gaaeqa aOGaaGykaiabgIGiopaanaaabaGaamiraaaaaaa@41F1@  выполняется | x | 2 + (ζ x n ) 2 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiYhaceWG4b GbauaacaaI8bWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGikaiab eA7a6jabgkHiTiaadIhadaWgaaWcbaGaamOBaaqabaGccaaIPaWaaW baaSqabeaacaaIYaaaaOGaeyiyIKRaaGimaaaa@4718@ , 0<arg(| x | 2 + (ζ x n ) 2 )<2π MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaicdacaaI8a GaaeyyaiaabkhacaqGNbGaaGikaiaaiYhaceWG4bGbauaacaaI8bWa aWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGikaiabeA7a6jabgkHiTi aadIhadaWgaaWcbaGaamOBaaqabaGccaaIPaWaaWbaaSqabeaacaaI YaaaaOGaaGykaiaaiYdacaaIYaGaeqiWdahaaa@4D7E@ .

В силу (2.2), g(v)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadEgacaaIOa GaamODaiaaiMcacaaI9aGaaGimaaaa@3D52@  при v>1ε MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadAhacaaI+a GaaGymaiabgkHiTiabew7aLbaa@3D97@ . Пользуясь теоремой единственности для аналитических функций (см. [22, с. 73]), заключаем, что g(ζ)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadEgacaaIOa GaeqOTdONaaGykaiaai2dacaaIWaaaaa@3E14@  для всех ζQ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeA7a6jabgI Giolaadgfaaaa@3C9C@ . Для дальнейших построений существенно, что прямая {ζ|ζ=t+i 2 ,t} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiUhacqaH2o GEcqGHiiIZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqb aiab=jqidjaayIW7caaMe8UaaGjbVlaaiYhacaaMi8UaaGjbVlaays W7cqaH2oGEcaaI9aGaamiDaiabgUcaRiaadMgadaGcaaqaaiaaikda aSqabaGccaaISaGaamiDaiabgIGiolab=1risjaai2haaaa@5D32@  принадлежит Q MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadgfaaaa@395B@ , поэтому согласно (2.11) имеем

g t+i 2 = D h x u x dx x 2 + ( x n i 2 t) 2 (n2)/2 =0 t,uH D . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaGaam4zam aabmaabaGaamiDaiabgUcaRiaadMgadaGcaaqaaiaaikdaaSqabaaa kiaawIcacaGLPaaacaaI9aWaa8quaeqaleaacaWGebaabeqdcqGHRi I8aOWaaSaaaeaacaWGObWaaeWaaeaacaWG4baacaGLOaGaayzkaaGa amyDamaabmaabaGaamiEaaGaayjkaiaawMcaaiaadsgacaWG4baaba WaaeWaaeaadaabdaqaaiqadIhagaqbaaGaay5bSlaawIa7amaaCaaa leqabaGaaGOmaaaakiabgUcaRiaaiIcacaWG4bWaaSbaaSqaaiaad6 gaaeqaaOGaeyOeI0IaamyAamaakaaabaGaaGOmaaWcbeaakiabgkHi TiaadshacaaIPaWaaWbaaSqabeaacaaIYaaaaaGccaGLOaGaayzkaa WaaWbaaSqabeaacaaIOaGaamOBaiabgkHiTiaaikdacaaIPaGaaG4l aiaaikdaaaaaaOGaaGypaiaaicdacaaMf8oabaGaeyiaIiIaamiDai abgIGioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGa e8xhHiLaaGilaiaaywW7caWG1bGaeyicI48efv3ySLgznfgDOfdarC qr1ngBPrginfgDObYtUvgaiyaacqGFlecsdaqadaqaaiaadseaaiaa wIcacaGLPaaacaaIUaaaaaa@8534@  (2.12)

При фиксированных uH D MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadwhacqGHii IZtuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=Tqi inaabmaabaGaamiraaGaayjkaiaawMcaaaaa@47D8@ , A > 0 на основании (2.12) и теоремы Фубини запишем

A A e iμt D h x u x dx x 2 + x n i 2 t 2 (n2)/2 dt= = D h x u x A A e iμt dt x 2 + ( x n i 2 t) 2 (n2)/2 dx=0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaWaa8qCae qaleaacqGHsislcaWGbbaabaGaamyqaaqdcqGHRiI8aOGaamyzamaa CaaaleqabaGaeyOeI0IaamyAaiabeY7aTjaadshaaaGcdaqadaqaam aapefabeWcbaGaamiraaqab0Gaey4kIipakmaalaaabaGaamiAamaa bmaabaGaamiEaaGaayjkaiaawMcaaiaadwhadaqadaqaaiaadIhaai aawIcacaGLPaaacaWGKbGaamiEaaqaamaabmaabaWaaqWaaeaaceWG 4bGbauaaaiaawEa7caGLiWoadaahaaWcbeqaaiaaikdaaaGccqGHRa WkdaqadaqaaiaadIhadaWgaaWcbaGaamOBaaqabaGccqGHsislcaWG PbWaaOaaaeaacaaIYaaaleqaaOGaeyOeI0IaamiDaaGaayjkaiaawM caamaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaamaaCaaaleqa baGaaGikaiaad6gacqGHsislcaaIYaGaaGykaiaai+cacaaIYaaaaa aaaOGaayjkaiaawMcaaiaadsgacaWG0bGaaGypaaqaaiaai2dadaWd rbqabSqaaiaadseaaeqaniabgUIiYdGccaWGObWaaeWaaeaacaWG4b aacaGLOaGaayzkaaGaamyDamaabmaabaGaamiEaaGaayjkaiaawMca amaabmaabaWaa8qCaeqaleaacqGHsislcaWGbbaabaGaamyqaaqdcq GHRiI8aOWaaSaaaeaacaWGLbWaaWbaaSqabeaacqGHsislcaWGPbGa eqiVd0MaamiDaaaakiaadsgacaWG0baabaWaaeWaaeaadaabdaqaai qadIhagaqbaaGaay5bSlaawIa7amaaCaaaleqabaGaaGOmaaaakiab gUcaRiaaiIcacaWG4bWaaSbaaSqaaiaad6gaaeqaaOGaeyOeI0Iaam yAamaakaaabaGaaGOmaaWcbeaakiabgkHiTiaadshacaaIPaWaaWba aSqabeaacaaIYaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIOa GaamOBaiabgkHiTiaaikdacaaIPaGaaG4laiaaikdaaaaaaaGccaGL OaGaayzkaaGaaGjcVlaadsgacaWG4bGaaGypaiaaicdacaaIUaaaaa a@9EC9@  (2.13)

Поскольку множество {xD| x =0} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiUhacaWG4b GaeyicI4SaamiraiaaysW7caaMe8UaaGjcVlaaiYhacaaMi8UaaGjb VlaaysW7ceWG4bGbauaacaaI9aGaaGimaiaai2haaaa@4AC1@  имеет в n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamrr1ngBPrwtHr hAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xhHi1aaWbaaSqabeaa caWGUbaaaaaa@445D@  меру нуль, можем считать, что в правом интеграле по [A,A] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiUfacqGHsi slcaWGbbGaaGilaiaayIW7caWGbbGaaGyxaaaa@3F11@  выполняется | x |>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiYhaceWG4b GbauaacaaI8bGaaGjbVlaaysW7caaI+aGaaGimaaaa@4036@ . Заметим, что величины a=| x | MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadggacaaI9a GaaGiFaiqadIhagaqbaiaaiYhaaaa@3D47@ , b= x n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadkgacaaI9a GaamiEamaaBaaaleaacaWGUbaabeaaaaa@3C4F@  удовлетворяют условию леммы 2.1. Согласно этой лемме, функция

η A x,μ = A A e iμt dt x 2 + x n i 2 t 2 (n2)/2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeE7aOnaaBa aaleaacaWGbbaabeaakmaabmaabaGaamiEaiaaiYcacqaH8oqBaiaa wIcacaGLPaaacaaI9aWaa8qCaeqaleaacqGHsislcaWGbbaabaGaam yqaaqdcqGHRiI8aOWaaSaaaeaacaWGLbWaaWbaaSqabeaacqGHsisl caWGPbGaeqiVd0MaamiDaaaakiaadsgacaWG0baabaWaaeWaaeaada abdaqaaiqadIhagaqbaaGaay5bSlaawIa7amaaCaaaleqabaGaaGOm aaaakiabgUcaRmaabmaabaGaamiEamaaBaaaleaacaWGUbaabeaaki abgkHiTiaadMgadaGcaaqaaiaaikdaaSqabaGccqGHsislcaWG0baa caGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaGccaGLOaGaayzkaa WaaWbaaSqabeaacaaIOaGaamOBaiabgkHiTiaaikdacaaIPaGaaG4l aiaaikdaaaaaaaaa@63E0@

при A+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadgeacqGHsg IRcqGHRaWkcqGHEisPaaa@3D8B@  сходится к I(μ;| x |, x n ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8heHKKaaGikaiabeY7a TjaaiUdacaaI8bGabmiEayaafaGaaGiFaiaaiYcacaWG4bWaaSbaaS qaaiaad6gaaeqaaOGaaGykaaaa@4CDF@  равномерно по xD MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadIhacqGHii IZcaWGebaaaa@3BCF@ . В частности, для всех μ\{0} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeY7aTjabgI Gioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xh HiLaaiixaiaaiUhacaaIWaGaaGyFaaaa@4A1D@  выполняется sup xD | η A (x,μ)|< MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaawafabeWcba GaamiEaiabgIGiolaadseaaeqakeaaciGGZbGaaiyDaiaacchaaaGa aGiFaiabeE7aOnaaBaaaleaacaWGbbaabeaakiaaiIcacaWG4bGaaG ilaiabeY7aTjaaiMcacaaI8bGaaGipaiabg6HiLcaa@4AF2@ . Предельный переход в (2.13) при A+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadgeacqGHsg IRcqGHRaWkcqGHEisPaaa@3D8B@  с использованием теоремы Лебега о мажорируемой сходимости дает

D h x u x e iμt dt x 2 + x n i 2 t 2 (n2)/2 dx=0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaapefabeWcba Gaamiraaqab0Gaey4kIipakiaadIgadaqadaqaaiaadIhaaiaawIca caGLPaaacaWG1bWaaeWaaeaacaWG4baacaGLOaGaayzkaaWaaeWaae aadaWdXbqabSqaaiabgkHiTiabg6HiLcqaaiabg6HiLcqdcqGHRiI8 aOWaaSaaaeaacaWGLbWaaWbaaSqabeaacqGHsislcaWGPbGaeqiVd0 MaamiDaaaakiaadsgacaWG0baabaWaaeWaaeaadaabdaqaaiqadIha gaqbaaGaay5bSlaawIa7amaaCaaaleqabaGaaGOmaaaakiabgUcaRm aabmaabaGaamiEamaaBaaaleaacaWGUbaabeaakiabgkHiTiaadMga daGcaaqaaiaaikdaaSqabaGccqGHsislcaWG0baacaGLOaGaayzkaa WaaWbaaSqabeaacaaIYaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaa caaIOaGaamOBaiabgkHiTiaaikdacaaIPaGaaG4laiaaikdaaaaaaa GccaGLOaGaayzkaaGaamizaiaadIhacaaI9aGaaGimaiaai6caaaa@6C98@

Поэтому из (2.3) следует равенство

D h x u x e iμ x n V μ x x (n3)/2 dx=0μ\{0}. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaapefabeWcba Gaamiraaqab0Gaey4kIipakiaadIgadaqadaqaaiaadIhaaiaawIca caGLPaaacaWG1bWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaamyzam aaCaaaleqabaGaeyOeI0IaamyAaiabeY7aTjaadIhadaWgaaqaaiaa d6gaaeqaaaaakmaalaaabaGaamOvamaabmaabaGaeqiVd02aaqWaae aaceWG4bGbauaaaiaawEa7caGLiWoaaiaawIcacaGLPaaaaeaadaab daqaaiqadIhagaqbaaGaay5bSlaawIa7amaaCaaaleqabaGaaGikai aad6gacqGHsislcaaIZaGaaGykaiaai+cacaaIYaaaaaaakiaayIW7 caWGKbGaamiEaiaai2dacaaIWaGaaGzbVlabgcGiIiabeY7aTjabgI Gioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xh HiLaaiixaiaaiUhacaaIWaGaaGyFaiaai6caaaa@752D@  (2.14)

Непосредственно проверяется, что для любого λ n1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiqbeU7aSzaafa GaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaa cqWFDeIudaahaaWcbeqaaiaad6gacqGHsislcaaIXaaaaaaa@4949@  функция u λ (x)= e i( λ , x )+| λ | x n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadwhadaWgaa WcbaGafq4UdWMbauaaaeqaaOGaaGikaiaadIhacaaIPaGaaGypaiaa dwgadaahaaWcbeqaaiabgkHiTiaadMgacaaIOaGafq4UdWMbauaaca aISaGabmiEayaafaGaaGykaiabgUcaRiaaiYhacuaH7oaBgaqbaiaa iYhacaWG4bWaaSbaaeaacaWGUbaabeaaaaaaaa@4D33@  принадлежит H(D) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae83cHGKaaGikaiaadsea caaIPaaaaa@4536@ . Полагая u= u λ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadwhacaaI9a GaamyDamaaBaaaleaacuaH7oaBgaqbaaqabaaaaa@3D2C@  в (2.14), получаем

D h x e i( λ , x )+( λ iμ) x n V μ x x (n3)/2 dx=0μ\{0}, λ n1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaapefabeWcba Gaamiraaqab0Gaey4kIipakiaadIgadaqadaqaaiaadIhaaiaawIca caGLPaaacaWGLbWaaWbaaSqabeaacqGHsislcaWGPbGaaGikaiqbeU 7aSzaafaGaaGilaiqadIhagaqbaiaaiMcacqGHRaWkcaaIOaWaaqWa aeaacuaH7oaBgaqbaaGaay5bSlaawIa7aiabgkHiTiaadMgacqaH8o qBcaaIPaGaamiEamaaBaaabaGaamOBaaqabaaaaOWaaSaaaeaacaWG wbWaaeWaaeaacqaH8oqBdaabdaqaaiqadIhagaqbaaGaay5bSlaawI a7aaGaayjkaiaawMcaaaqaamaaemaabaGabmiEayaafaaacaGLhWUa ayjcSdWaaWbaaSqabeaacaaIOaGaamOBaiabgkHiTiaaiodacaaIPa GaaG4laiaaikdaaaaaaOGaaGjcVlaadsgacaWG4bGaaGypaiaaicda caaMe8UaaGjbVlabgcGiIiabeY7aTjabgIGioprr1ngBPrwtHrhAYa qeguuDJXwAKbstHrhAGq1DVbacfaGae8xhHiLaaiixaiaaiUhacaaI WaGaaGyFaiaaiYcacaaMe8Uafq4UdWMbauaacqGHiiIZcqWFDeIuda ahaaWcbeqaaiaad6gacqGHsislcaaIXaaaaOGaaGOlaaaa@8A8F@  (2.15)

При каждом λ n1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiqbeU7aSzaafa GaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaa cqWFDeIudaahaaWcbeqaaiaad6gacqGHsislcaaIXaaaaaaa@4949@  функция в левой части (2.15) аналитична по μ\{0} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeY7aTjabgI Gioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xh HiLaaiixaiaaiUhacaaIWaGaaGyFaaaa@4A1D@ . Поэтому равенство (2.15) по аналитичности продолжается на комплексную плоскость с разрезом вдоль луча i + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamrr1ngBPrwtHr hAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xhHi1aaSbaaSqaaiab gUcaRaqabaaaaa@444B@ . Полагая μ=p λ i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeY7aTjaai2 dacaWGWbGaeyOeI0YaaqWaaeaacuaH7oaBgaqbaaGaay5bSlaawIa7 aiaadMgaaaa@42B4@ , p0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadchacqGHGj sUcaaIWaaaaa@3BFB@  в (2.14), получаем

D h x , x n e ip x n e i( λ , x ) V p λ i x x (n3)/2 d x d x n =0 λ n1 ,p\{0}. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaapefabeWcba Gaamiraaqab0Gaey4kIipakiaadIgadaqadaqaaiqadIhagaqbaiaa iYcacaaMi8UaamiEamaaBaaaleaacaWGUbaabeaaaOGaayjkaiaawM caaiaadwgadaahaaWcbeqaaiabgkHiTiaadMgacaWGWbGaamiEamaa BaaabaGaamOBaaqabaaaaOGaamyzamaaCaaaleqabaGaeyOeI0Iaam yAaiaaiIcacuaH7oaBgaqbaiaaiYcaceWG4bGbauaacaaIPaaaaOWa aSaaaeaacaWGwbWaaeWaaeaadaqadaqaaiaadchacqGHsisldaabda qaaiqbeU7aSzaafaaacaGLhWUaayjcSdGaamyAaaGaayjkaiaawMca amaaemaabaGabmiEayaafaaacaGLhWUaayjcSdaacaGLOaGaayzkaa aabaWaaqWaaeaaceWG4bGbauaaaiaawEa7caGLiWoadaahaaWcbeqa aiaaiIcacaWGUbGaeyOeI0IaaG4maiaaiMcacaaIVaGaaGOmaaaaaa GccaWGKbGabmiEayaafaGaamizaiaadIhadaWgaaWcbaGaamOBaaqa baGccaaI9aGaaGimaiaaysW7caaMe8UaeyiaIiIafq4UdWMbauaacq GHiiIZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab =1risnaaCaaaleqabaGaamOBaiabgkHiTiaaigdaaaGccaaISaGaaG jcVlaayIW7caaMe8UaamiCaiabgIGiolab=1risjaacYfacaaI7bGa aGimaiaai2hacaaIUaaaaa@93AF@  (2.16)

Зафиксируем финитную на + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamrr1ngBPrwtHr hAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xhHi1aaSbaaSqaaiab gUcaRaqabaaaaa@444B@  функцию η=η(r) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeE7aOjaai2 dacqaH3oaAcaaIOaGaamOCaiaaiMcaaaa@3F00@ , r0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadkhatuuDJX wAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=5Nkfkaaicda aaa@458B@ , и функцию Y k,l MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadMfadaWgaa WcbaGaam4AaiaaiYcacaWGSbaabeaaaaa@3C26@  тригонометрического базиса для некоторых k0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadUgatuuDJX wAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=5Nkfkaaicda aaa@4584@  и 1l d k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaigdatuuDJX wAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1NkekaadYga cqWF9PcHcaWGKbWaaSbaaSqaaiaadUgaaeqaaaaa@4939@ . Умножим обе части равенства (2.16) на η( λ ) Y k,l (θ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeE7aOjaaiI cadaabdaqaaiqbeU7aSzaafaaacaGLhWUaayjcSdGaaGykaiaadMfa daWgaaWcbaGaam4AaiaaiYcacaWGSbaabeaakiaaiIcacqaH4oqCca aIPaaaaa@473E@ , где θ= λ / λ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeI7aXjaai2 dacuaH7oaBgaqbaiaai+cadaabdaqaaiqbeU7aSzaafaaacaGLhWUa ayjcSdaaaa@425D@ , и проинтегрируем результат по n1 ={ λ } MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamrr1ngBPrwtHr hAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xhHi1aaWbaaSqabeaa caWGUbGaeyOeI0IaaGymaaaakiaai2dacaaI7bGafq4UdWMbauaaca aI9baaaa@4AA2@ , считая функцию h продолженной нулем вне D. Мы будем иметь

n1 h x , x n x (n3)/2 e ip x n × × n1 e i( λ , x ) V p λ i x ×η λ Y k,l θ d λ d x d x n =0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaWaa8qCae qaleaacqGHsislcqGHEisPaeaacqGHEisPa0Gaey4kIipakmaapefa beWcbaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacq WFDeIudaahaaqabeaacaWGUbGaeyOeI0IaaGymaaaaaeqaniabgUIi YdGcdaWcaaqaaiaadIgadaqadaqaaiqadIhagaqbaiaaiYcacaaMi8 UaamiEamaaBaaaleaacaWGUbaabeaaaOGaayjkaiaawMcaaaqaamaa emaabaGabmiEayaafaaacaGLhWUaayjcSdWaaWbaaSqabeaacaaIOa GaamOBaiabgkHiTiaaiodacaaIPaGaaG4laiaaikdaaaaaaOGaamyz amaaCaaaleqabaGaeyOeI0IaamyAaiaadchacaWG4bWaaSbaaeaaca WGUbaabeaaaaGccqGHxdaTaeaacqGHxdaTdaqadaqaamaapefabeWc baGae8xhHi1aaWbaaeqabaGaamOBaiabgkHiTiaaigdaaaaabeqdcq GHRiI8aOGaamyzamaaCaaaleqabaGaeyOeI0IaamyAaiaaiIcacuaH 7oaBgaqbaiaaiYcaceWG4bGbauaacaaIPaaaaOGaamOvamaabmaaba WaaeWaaeaacaWGWbGaaGjbVlabgkHiTmaaemaabaGafq4UdWMbauaa aiaawEa7caGLiWoacaWGPbaacaGLOaGaayzkaaWaaqWaaeaaceWG4b GbauaaaiaawEa7caGLiWoaaiaawIcacaGLPaaacqGHxdaTcaaMe8Ua eq4TdG2aaeWaaeaadaabdaqaaiqbeU7aSzaafaaacaGLhWUaayjcSd aacaGLOaGaayzkaaGaamywamaaBaaaleaacaWGRbGaaGilaiaadYga aeqaaOWaaeWaaeaacqaH4oqCaiaawIcacaGLPaaacaWGKbGafq4UdW MbauaaaiaawIcacaGLPaaacaWGKbGabmiEayaafaGaamizaiaadIha daWgaaWcbaGaamOBaaqabaGccaaI9aGaaGimaiaai6caaaaa@A80E@  (2.17)

Согласно формуле (2.6.5) из [23] (см. также теорему 3.10 из [24]), имеем

n1 e i( λ , x ) V p λ i x η λ Y k,l θ d λ = = i k 2π (n1)/2 ρ (3n)/2 Y k,l φ × × 0 J (n1)/2+k1 rρ V pir ρ η r r (n1)/2 dr, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaWaa8quae qaleaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab =1risnaaCaaabeqaaiaad6gacqGHsislcaaIXaaaaaqab0Gaey4kIi pakiaadwgadaahaaWcbeqaaiabgkHiTiaadMgacaaIOaGafq4UdWMb auaacaaISaGabmiEayaafaGaaGykaaaakiaadAfadaqadaqaamaabm aabaGaamiCaiabgkHiTmaaemaabaGafq4UdWMbauaaaiaawEa7caGL iWoacaWGPbaacaGLOaGaayzkaaWaaqWaaeaaceWG4bGbauaaaiaawE a7caGLiWoaaiaawIcacaGLPaaacqaH3oaAdaqadaqaamaaemaabaGa fq4UdWMbauaaaiaawEa7caGLiWoaaiaawIcacaGLPaaacaWGzbWaaS baaSqaaiaadUgacaaISaGaamiBaaqabaGcdaqadaqaaiabeI7aXbGa ayjkaiaawMcaaiaadsgacuaH7oaBgaqbaiaai2daaeaacaaI9aWaae WaaeaacqGHsislcaWGPbaacaGLOaGaayzkaaWaaWbaaSqabeaacaWG RbaaaOWaaeWaaeaacaaIYaGaeqiWdahacaGLOaGaayzkaaWaaWbaaS qabeaacaaIOaGaamOBaiabgkHiTiaaigdacaaIPaGaaG4laiaaikda aaGccqaHbpGCdaahaaWcbeqaaiaaiIcacaaIZaGaeyOeI0IaamOBai aaiMcacaaIVaGaaGOmaaaakiaadMfadaWgaaWcbaGaam4AaiaaiYca caWGSbaabeaakmaabmaabaGaeqOXdOgacaGLOaGaayzkaaGaey41aq labaGaey41aqRaaGjbVpaapehabeWcbaGaaGimaaqaaiabg6HiLcqd cqGHRiI8aOGaamOsamaaBaaaleaacaaIOaGaamOBaiabgkHiTiaaig dacaaIPaGaaG4laiaaikdacqGHRaWkcaWGRbGaeyOeI0IaaGymaaqa baGcdaqadaqaaiaadkhacqaHbpGCaiaawIcacaGLPaaacaWGwbWaae WaaeaadaqadaqaaiaadchacqGHsislcaWGPbGaamOCaaGaayjkaiaa wMcaaiabeg8aYbGaayjkaiaawMcaaiabeE7aOnaabmaabaGaamOCaa GaayjkaiaawMcaaiaadkhadaahaaWcbeqaaiaaiIcacaWGUbGaeyOe I0IaaGymaiaaiMcacaaIVaGaaGOmaaaakiaayIW7caWGKbGaamOCai aaiYcaaaaa@C0CA@  (2.18)

где φ= x / x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeA8aQjaai2 daceWG4bGbauaacaaIVaWaaqWaaeaaceWG4bGbauaaaiaawEa7caGL iWoaaaa@40F6@ , ρ= x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeg8aYjaai2 dadaabdaqaaiqadIhagaqbaaGaay5bSlaawIa7aaaa@3F37@ , J (n1)/2+k1 (ζ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadQeadaWgaa WcbaGaaGikaiaad6gacqGHsislcaaIXaGaaGykaiaai+cacaaIYaGa ey4kaSIaam4AaiabgkHiTiaaigdaaeqaaOGaaGikaiabeA7a6jaaiM caaaa@459B@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3794@  функция Бесселя.

Выбирая в (2.17) в качестве η MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeE7aObaa@3A31@  элемент последовательности финитных на + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamrr1ngBPrwtHr hAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xhHi1aaSbaaSqaaiab gUcaRaqabaaaaa@444B@  функций { η m (r)} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiUhacqaH3o aAdaWgaaWcbaGaamyBaaqabaGccaaIOaGaamOCaiaaiMcacaaI9baa aa@3FC1@ , сходящихся в D () MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaGaf83aXtKbauaacaaIOaWe fv3ySLgznfgDOjdarCqr1ngBPrginfgDObcv39gaiyaacqGFDeIuca aIPaaaaa@4FF6@  к δ(rt) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabes7aKjaaiI cacaWGYbGaeyOeI0IaamiDaiaaiMcaaaa@3E6C@ , t > 0, и переходя к пределу при m MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaad2gacqGHsg IRcqGHEisPaaa@3CD5@ , из (2.17), (2.18) получаем

0 S n2 ρ n2 h x ρ,φ , x n ρ (n3)/2 ρ (3n)/2 Y k,l φ dφ e ip x n d x n × × J (n1)/2+k1 tρ V pit ρ dρ=0t0,p\{0}. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaWaa8qCae qaleaacaaIWaaabaGaeyOhIukaniabgUIiYdGcdaqadaqaamaapeha beWcbaGaeyOeI0IaeyOhIukabaGaeyOhIukaniabgUIiYdGcdaqada qaamaapefabeWcbaGaam4uamaaCaaabeqaaiaad6gacqGHsislcaaI Yaaaaaqab0Gaey4kIipakiabeg8aYnaaCaaaleqabaGaamOBaiabgk HiTiaaikdaaaGcdaWcaaqaaiaadIgadaqadaqaaiqadIhagaqbamaa bmaabaGaeqyWdiNaaGilaiabeA8aQbGaayjkaiaawMcaaiaaiYcaca aMi8UaamiEamaaBaaaleaacaWGUbaabeaaaOGaayjkaiaawMcaaaqa aiabeg8aYnaaCaaaleqabaGaaGikaiaad6gacqGHsislcaaIZaGaaG ykaiaai+cacaaIYaaaaaaakiabeg8aYnaaCaaaleqabaGaaGikaiaa iodacqGHsislcaWGUbGaaGykaiaai+cacaaIYaaaaOGaamywamaaBa aaleaacaWGRbGaaGilaiaadYgaaeqaaOWaaeWaaeaacqaHgpGAaiaa wIcacaGLPaaacaWGKbGaeqOXdOgacaGLOaGaayzkaaGaamyzamaaCa aaleqabaGaeyOeI0IaamyAaiaadchacaWG4bWaaSbaaeaacaWGUbaa beaaaaGccaaMi8UaamizaiaadIhadaWgaaWcbaGaamOBaaqabaaaki aawIcacaGLPaaacqGHxdaTaeaacqGHxdaTcaaMe8UaamOsamaaBaaa leaacaaIOaGaamOBaiabgkHiTiaaigdacaaIPaGaaG4laiaaikdacq GHRaWkcaWGRbGaeyOeI0IaaGymaaqabaGcdaqadaqaaiaadshacqaH bpGCaiaawIcacaGLPaaacaWGwbWaaeWaaeaadaqadaqaaiaadchacq GHsislcaWGPbGaamiDaaGaayjkaiaawMcaaiabeg8aYbGaayjkaiaa wMcaaiaadsgacqaHbpGCcaaI9aGaaGimaiaaywW7cqGHaiIicaWG0b GaeyyzImRaaGimaiaayIW7caaISaGaaGjbVlaaysW7cqGHaiIicaWG WbGaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiu aacqWFDeIucaGGCbGaaG4EaiaaicdacaaI9bGaaGOlaaaaaa@C0F4@  (2.19)

Здесь x (ρ,φ)=ρφ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiqadIhagaqbai aaiIcacqaHbpGCcaaISaGaeqOXdOMaaGykaiaai2dacqaHbpGCcqaH gpGAaaa@436A@ , ρ= x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeg8aYjaai2 dadaabdaqaaiqadIhagaqbaaGaay5bSlaawIa7aaaa@3F37@ . При выводе (2.19) использовалась формула

n1 f x d x = 0 S ρ n2 f x dφ dρ= 0 ρ n2 S n2 f x ρ,φ dφ dρ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaapefabeWcba Wefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFDeIu daahaaqabeaacaWGUbGaeyOeI0IaaGymaaaaaeqaniabgUIiYdGcca WGMbWaaeWaaeaaceWG4bGbauaaaiaawIcacaGLPaaacaWGKbGabmiE ayaafaGaaGypamaapehabeWcbaGaaGimaaqaaiabg6HiLcqdcqGHRi I8aOWaaeWaaeaadaWdrbqabSqaaiaadofadaqhaaqaaiabeg8aYbqa aiaad6gacqGHsislcaaIYaaaaaqab0Gaey4kIipakiaadAgadaqada qaaiqadIhagaqbaaGaayjkaiaawMcaaiaadsgacqaHgpGAaiaawIca caGLPaaacaWGKbGaeqyWdiNaeyypa0Zaa8qCaeqaleaacaaIWaaaba GaeyOhIukaniabgUIiYdGccqaHbpGCdaahaaWcbeqaaiaad6gacqGH sislcaaIYaaaaOWaaeWaaeaadaWdrbqabSqaaiaadofadaahaaqabe aacaWGUbGaeyOeI0IaaGOmaaaaaeqaniabgUIiYdGccaWGMbWaaeWa aeaaceWG4bGbauaadaqadaqaaiabeg8aYjaaiYcacqaHgpGAaiaawI cacaGLPaaaaiaawIcacaGLPaaacaWGKbGaeqOXdOgacaGLOaGaayzk aaGaamizaiabeg8aYjaaiYcaaaa@860E@

в которой S ρ n2 ={ x n1 x =ρ} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadofadaqhaa WcbaGaeqyWdihabaGaamOBaiabgkHiTiaaikdaaaGccaaI9aGaaG4E aiqadIhagaqbaiabgIGioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHr hAGq1DVbacfaGae8xhHi1aaWbaaSqabeaacaWGUbGaeyOeI0IaaGym aaaakmaaeeaabaGaaGjcVpaaemaabaGabmiEayaafaaacaGLhWUaay jcSdaacaGLhWoacaaI9aGaeqyWdiNaaGyFaaaa@5AB1@  и f MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadAgaaaa@3970@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3794@  произвольная интегрируемая на n1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamrr1ngBPrwtHr hAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xhHi1aaWbaaSqabeaa caWGUbGaeyOeI0IaaGymaaaaaaa@4605@  функция.

Завершение доказательства проводится по схеме из [17]. Обозначим

G k,l ρ, x n = S n2 ρh x ρ,φ , x n Y k,l φ dφ, f p,k,l ρ = G k,l ρ, x n e ip x n d x n . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaGaam4ram aaBaaaleaacaWGRbGaaGilaiaadYgaaeqaaOWaaeWaaeaacqaHbpGC caaISaGaaGjcVlaadIhadaWgaaWcbaGaamOBaaqabaaakiaawIcaca GLPaaacaaI9aWaa8quaeqaleaacaWGtbWaaWbaaeqabaGaamOBaiab gkHiTiaaikdaaaaabeqdcqGHRiI8aOGaeqyWdiNaaGjcVlaadIgada qadaqaaiqadIhagaqbamaabmaabaGaeqyWdiNaaGilaiabeA8aQbGa ayjkaiaawMcaaiaaiYcacaaMi8UaamiEamaaBaaaleaacaWGUbaabe aaaOGaayjkaiaawMcaaiaadMfadaWgaaWcbaGaam4AaiaaiYcacaWG SbaabeaakmaabmaabaGaeqOXdOgacaGLOaGaayzkaaGaamizaiabeA 8aQjaaiYcaaeaacaWGMbWaaSbaaSqaaiaadchacaaISaGaam4Aaiaa iYcacaWGSbaabeaakmaabmaabaGaeqyWdihacaGLOaGaayzkaaGaaG ypamaapehabeWcbaGaeyOeI0IaeyOhIukabaGaeyOhIukaniabgUIi YdGccaWGhbWaaSbaaSqaaiaadUgacaaISaGaamiBaaqabaGcdaqada qaaiabeg8aYjaaiYcacaaMi8UaamiEamaaBaaaleaacaWGUbaabeaa aOGaayjkaiaawMcaaiaadwgadaahaaWcbeqaaiabgkHiTiaadMgaca WGWbGaamiEamaaBaaabaGaamOBaaqabaaaaOGaamizaiaadIhadaWg aaWcbaGaamOBaaqabaGccaaIUaaaaaa@8AA2@  (2.20)

Из (2.19) следует равенство

0 J (n1)/2+k1 tρ V pit ρ f p,k,l ρ dρ=0 t0,p\{0}. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaauaabaqabeaaaq aaceqaamaapehabeWcbaGaaGimaaqaaiabg6HiLcqdcqGHRiI8aOGa amOsamaaBaaaleaacaaIOaGaamOBaiabgkHiTiaaigdacaaIPaGaaG 4laiaaikdacqGHRaWkcaWGRbGaeyOeI0IaaGymaaqabaGcdaqadaqa aiaadshacqaHbpGCaiaawIcacaGLPaaacaWGwbWaaeWaaeaadaqada qaaiaadchacqGHsislcaWGPbGaamiDaaGaayjkaiaawMcaaiabeg8a YbGaayjkaiaawMcaaiaadAgadaWgaaWcbaGaamiCaiaaiYcacaWGRb GaaGilaiaadYgaaeqaaOWaaeWaaeaacqaHbpGCaiaawIcacaGLPaaa caWGKbGaeqyWdiNaaGypaiaaicdaaeaacqGHaiIicaWG0bGaeyyzIm RaaGimaiaaiYcacaaMf8UaamiCaiabgIGioprr1ngBPrwtHrhAYaqe guuDJXwAKbstHrhAGq1DVbacfaGae8xhHiLaaiixaiaaiUhacaaIWa GaaGyFaiaai6caaaaaaaa@79D4@  (2.21)

Имеет место представление

f p,k,l ρ = j=0 ip j j! G k,l ρ, x n x n j d x n . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadAgadaWgaa WcbaGaamiCaiaaiYcacaWGRbGaaGilaiaadYgaaeqaaOWaaeWaaeaa cqaHbpGCaiaawIcacaGLPaaacaaI9aWaaabCaeqaleaacaWGQbGaaG ypaiaaicdaaeaacqGHEisPa0GaeyyeIuoakmaalaaabaWaaeWaaeaa cqGHsislcaWGPbGaamiCaaGaayjkaiaawMcaamaaCaaaleqabaGaam OAaaaaaOqaaiaadQgacaGGHaaaamaaeiaabaGaaGjbVlaaysW7aiaa wIa7aiaaysW7daWdXbqabSqaaiabgkHiTiabg6HiLcqaaiabg6HiLc qdcqGHRiI8aOGaam4ramaaBaaaleaacaWGRbGaaGilaiaadYgaaeqa aOWaaeWaaeaacqaHbpGCcaaISaGaaGjcVlaadIhadaWgaaWcbaGaam OBaaqabaaakiaawIcacaGLPaaacaWG4bWaa0baaSqaaiaad6gaaeaa caWGQbaaaOGaamizaiaadIhadaWgaaWcbaGaamOBaaqabaGccaaIUa aaaa@6DF5@

Поскольку x 1ε MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaaemaabaGaam iEaaGaay5bSlaawIa7amrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhA Gq1DVbacfaGae8xFQqOaaGymaiabgkHiTiabew7aLbaa@4B46@  для xD MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadIhacqGHii IZcaWGebaaaa@3BCF@ , функция G k,l 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadEeadaWgaa WcbaGaam4AaiaaiYcacaWGSbaabeaakiabggMi6kaaicdaaaa@3EA1@  вне прямоугольника [0,1ε]×[(1ε),1ε] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiUfacaaIWa GaaGilaiaayIW7caaIXaGaeyOeI0IaeqyTduMaaGyxaiabgEna0kaa iUfacqGHsislcaaIOaGaaGymaiabgkHiTiabew7aLjaaiMcacaaISa GaaGjcVlaaigdacqGHsislcqaH1oqzcaaIDbaaaa@4FBB@ , и соответственно f p,k,l 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadAgadaWgaa WcbaGaamiCaiaaiYcacaWGRbGaaGilaiaadYgaaeqaaOGaeyyyIORa aGimaaaa@406B@  вне отрезка [0,1ε] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiUfacaaIWa GaaGilaiaayIW7caaIXaGaeyOeI0IaeqyTduMaaGyxaaaa@40A1@ .

Зафиксируем номера k= k 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadUgacaaI9a Gaam4AamaaBaaaleaacaaIWaaabeaaaaa@3C12@ , l= l 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadYgacaaI9a GaamiBamaaBaaaleaacaaIWaaabeaaaaa@3C14@ . Возможны два случая:

1) для всех j=0,1, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadQgacaaI9a GaaGimaiaaiYcacaaIXaGaaGilaiablAcilbaa@3E3E@  справедливо G k,l (ρ, x n ) x n j d x n =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaapehabeWcba GaeyOeI0IaeyOhIukabaGaeyOhIukaniabgUIiYdGccaWGhbWaaSba aSqaaiaadUgacaaISaGaamiBaaqabaGccaaIOaGaeqyWdiNaaGilai aayIW7caWG4bWaaSbaaSqaaiaad6gaaeqaaOGaaGykaiaadIhadaqh aaWcbaGaamOBaaqaaiaadQgaaaGccaWGKbGaamiEamaaBaaaleaaca WGUbaabeaakiaai2dacaaIWaaaaa@5199@  для п.в. ρ0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeg8aYnrr1n gBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8NFQuOaaGim aaaa@4654@ ; таким образом, в этом случае f p,k,l =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadAgadaWgaa WcbaGaamiCaiaaiYcacaWGRbGaaGilaiaadYgaaeqaaOGaaGypaiaa icdaaaa@3F69@  п.в. для всех p\{0} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadchacqGHii IZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1ri sjaacYfacaaI7bGaaGimaiaai2haaaa@495C@ ;

2) найдется номер m0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaad2gatuuDJX wAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=5Nkfkaaicda aaa@4586@  такой, что G k,l (ρ, x n ) x n j d x n =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaapehabeWcba GaeyOeI0IaeyOhIukabaGaeyOhIukaniabgUIiYdGccaWGhbWaaSba aSqaaiaadUgacaaISaGaamiBaaqabaGccaaIOaGaeqyWdiNaaGilai aayIW7caWG4bWaaSbaaSqaaiaad6gaaeqaaOGaaGykaiaadIhadaqh aaWcbaGaamOBaaqaaiaadQgaaaGccaWGKbGaamiEamaaBaaaleaaca WGUbaabeaakiaai2dacaaIWaaaaa@5199@  для п.в. ρ0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeg8aYnrr1n gBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8NFQuOaaGim aaaa@4654@  и всех 0j<m MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaicdatuuDJX wAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1NkekaadQga caaI8aGaamyBaaaa@4739@ , но функция G k,l (ρ, x n ) x n m d x n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaapehabeWcba GaeyOeI0IaeyOhIukabaGaeyOhIukaniabgUIiYdGccaWGhbWaaSba aSqaaiaadUgacaaISaGaamiBaaqabaGccaaIOaGaeqyWdiNaaGilai aayIW7caWG4bWaaSbaaSqaaiaad6gaaeqaaOGaaGykaiaadIhadaqh aaWcbaGaamOBaaqaaiaad2gaaaGccaWGKbGaamiEamaaBaaaleaaca WGUbaabeaaaaa@5011@  отлична от нуля на множестве положительной меры в [0,1ε] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiUfacaaIWa GaaGilaiaayIW7caaIXaGaeyOeI0IaeqyTduMaaGyxaaaa@40A1@ .

В случае 1) по теореме Мюнца (см. [25, с. 54]) для п.в. ρ0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeg8aYnrr1n gBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8NFQuOaaGim aaaa@4654@ , x n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadIhadaWgaa WcbaGaamOBaaqabaGccqGHiiIZtuuDJXwAK1uy0HMmaeHbfv3ySLgz G0uy0HgiuD3BaGqbaiab=1risbaa@46E7@  имеем G k,l (ρ, x n )=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadEeadaWgaa WcbaGaam4AaiaaiYcacaWGSbaabeaakiaaiIcacqaHbpGCcaaISaGa aGjcVlaadIhadaWgaaWcbaGaamOBaaqabaGccaaIPaGaaGypaiaaic daaaa@4531@ . Поэтому ввиду (2.20)

S n2 h x ρ,φ , x n Y k,l φ dφ=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaapefabeWcba Gaam4uamaaCaaabeqaaiaad6gacqGHsislcaaIYaaaaaqab0Gaey4k IipakiaadIgadaqadaqaaiaadIhadaqadaqaaiabeg8aYjaaiYcacq aHgpGAaiaawIcacaGLPaaacaaISaGaaGjcVlaadIhadaWgaaWcbaGa amOBaaqabaaakiaawIcacaGLPaaacaWGzbWaaSbaaSqaaiaadUgaca aISaGaamiBaaqabaGcdaqadaqaaiabeA8aQbGaayjkaiaawMcaaiaa dsgacqaHgpGAcaaI9aGaaGimaaaa@5724@  (2.22)

для п.в. ρ0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeg8aYnrr1n gBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8NFQuOaaGim aaaa@4654@ , x n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadIhadaWgaa WcbaGaamOBaaqabaGccqGHiiIZtuuDJXwAK1uy0HMmaeHbfv3ySLgz G0uy0HgiuD3BaGqbaiab=1risbaa@46E7@ .

Рассмотрим подробнее случай 2). В этом случае при p0+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadchacqGHsg IRcaaIWaGaey4kaScaaa@3D03@  справедливо равенство

f p,k,l ρ = ip m m! G k,l ρ, x n x n m d x n +O p m+1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadAgadaWgaa WcbaGaamiCaiaaiYcacaWGRbGaaGilaiaadYgaaeqaaOWaaeWaaeaa cqaHbpGCaiaawIcacaGLPaaacaaI9aWaaSaaaeaadaqadaqaaiabgk HiTiaadMgacaWGWbaacaGLOaGaayzkaaWaaWbaaSqabeaacaWGTbaa aaGcbaGaamyBaiaaigcaaaWaa8qCaeqaleaacqGHsislcqGHEisPae aacqGHEisPa0Gaey4kIipakiaadEeadaWgaaWcbaGaam4AaiaaiYca caWGSbaabeaakmaabmaabaGaeqyWdiNaaGilaiaayIW7caWG4bWaaS baaSqaaiaad6gaaeqaaaGccaGLOaGaayzkaaGaamiEamaaDaaaleaa caWGUbaabaGaamyBaaaakiaadsgacaWG4bWaaSbaaSqaaiaad6gaae qaaOGaey4kaSIaam4tamaabmaabaGaamiCamaaCaaaleqabaGaamyB aiabgUcaRiaaigdaaaaakiaawIcacaGLPaaacaaIUaaaaa@6893@  (2.23)

Поэтому при малых p > 0 имеет место

f p,k,l L 2 (0,) = p m m! G k,l , x n x n m d x n L 2 (0,) +O p m+1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaafmaabaGaam OzamaaBaaaleaacaWGWbGaaGilaiaadUgacaaISaGaamiBaaqabaaa kiaawMa7caGLkWoadaWgaaWcbaGaamitamaaBaaabaGaaGOmaaqaba GaaGikaiaaicdacaaISaGaeyOhIuQaaGykaaqabaGccqGH9aqpdaWc aaqaaiaadchadaahaaWcbeqaaiaad2gaaaaakeaacaWGTbGaaGyiaa aadaqbdaqaamaapehabeWcbaGaeyOeI0IaeyOhIukabaGaeyOhIuka niabgUIiYdGccaWGhbWaaSbaaSqaaiaadUgacaaISaGaamiBaaqaba GcdaqadaqaaiabgwSixlaaiYcacaaMi8UaamiEamaaBaaaleaacaWG UbaabeaaaOGaayjkaiaawMcaaiaadIhadaqhaaWcbaGaamOBaaqaai aad2gaaaGccaWGKbGaamiEamaaBaaaleaacaWGUbaabeaaaOGaayzc SlaawQa7amaaBaaaleaacaWGmbWaaSbaaeaacaaIYaaabeaacaaIOa GaaGimaiaaiYcacqGHEisPcaaIPaaabeaakiabgUcaRiaad+eadaqa daqaaiaadchadaahaaWcbeqaaiaad2gacqGHRaWkcaaIXaaaaaGcca GLOaGaayzkaaGaaGOlaaaa@7551@  (2.24)

Из (2.24) следует, что для достаточно малого δ>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabes7aKjaai6 dacaaIWaaaaa@3BAC@  при 0<pδ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaicdacaaI8a GaamiCaiaaysW7caaMe8+efv3ySLgznfgDOjdaryqr1ngBPrginfgD Obcv39gaiuaacqWF9PcHcaaMe8UaaGjbVlabes7aKbaa@4E26@  выполняется f p,k,l L 2 (0,) >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaGabaiab=vIiqj aadAgadaWgaaWcbaGaamiCaiaaiYcacaWGRbGaaGilaiaadYgaaeqa aOGae8xjIa1aaSbaaSqaaiaadYeadaWgaaqaaiaaikdaaeqaaiaaiI cacaaIWaGaaGilaiabg6HiLkaaiMcaaeqaaOGaaGOpaiaaicdaaaa@47D8@ .

Введем обозначение

f ˜ p,k,l ρ = f p,k,l ρ / f p,k,l L 2 (0,) , ρ0,0<pδ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaaGaaabaGaam OzaaGaay5adaWaaSbaaSqaaiaadchacaaISaGaam4AaiaaiYcacaWG SbaabeaakmaabmaabaGaeqyWdihacaGLOaGaayzkaaGaaGypamaaly aabaGaamOzamaaBaaaleaacaWGWbGaaGilaiaadUgacaaISaGaamiB aaqabaGcdaqadaqaaiabeg8aYbGaayjkaiaawMcaaaqaamaafmaaba GaamOzamaaBaaaleaacaWGWbGaaGilaiaadUgacaaISaGaamiBaaqa baaakiaawMa7caGLkWoadaWgaaWcbaGaamitamaaBaaabaGaaGOmaa qabaGaaGikaiaaicdacaaISaGaeyOhIuQaaGykaaqabaGccaaISaaa aiaaysW7caaMe8UaeqyWdiNaeyyzImRaaGimaiaaiYcacaaMi8UaaG jcVlaaysW7caaIWaGaaGipaiaadchacqGHKjYOcqaH0oazcaaIUaaa aa@6E2C@

Используя (2.23) и (2.24), получаем

f ˜ p,k,l ρ = G k,l , x n x n m d x n L 2 (0,) +O p 1 × × i m G k,l ρ, x n x n m d x n +O p . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaWaaacaae aacaWGMbaacaGLdmaadaWgaaWcbaGaamiCaiaaiYcacaWGRbGaaGil aiaadYgaaeqaaOWaaeWaaeaacqaHbpGCaiaawIcacaGLPaaacaaI9a WaaeWaaeaadaqbdaqaamaapehabeWcbaGaeyOeI0IaeyOhIukabaGa eyOhIukaniabgUIiYdGccaWGhbWaaSbaaSqaaiaadUgacaaISaGaam iBaaqabaGcdaqadaqaaiabgwSixlaaiYcacaWG4bWaaSbaaSqaaiaa d6gaaeqaaaGccaGLOaGaayzkaaGaamiEamaaDaaaleaacaWGUbaaba GaamyBaaaakiaadsgacaWG4bWaaSbaaSqaaiaad6gaaeqaaaGccaGL jWUaayPcSdWaaSbaaSqaaiaadYeadaWgaaqaaiaaikdaaeqaaiaaiI cacaaIWaGaaGilaiabg6HiLkaaiMcaaeqaaOGaey4kaSIaam4tamaa bmaabaGaamiCaaGaayjkaiaawMcaaaGaayjkaiaawMcaamaaCaaale qabaGaeyOeI0IaaGymaaaakiabgEna0cqaaiabgEna0oaabmaabaWa aeWaaeaacqGHsislcaWGPbaacaGLOaGaayzkaaWaaWbaaSqabeaaca WGTbaaaOWaa8qCaeqaleaacqGHsislcqGHEisPaeaacqGHEisPa0Ga ey4kIipakiaadEeadaWgaaWcbaGaam4AaiaaiYcacaWGSbaabeaakm aabmaabaGaeqyWdiNaaGilaiaayIW7caWG4bWaaSbaaSqaaiaad6ga aeqaaaGccaGLOaGaayzkaaGaamiEamaaDaaaleaacaWGUbaabaGaam yBaaaakiaadsgacaWG4bWaaSbaaSqaaiaad6gaaeqaaOGaey4kaSIa am4tamaabmaabaGaamiCaaGaayjkaiaawMcaaaGaayjkaiaawMcaai aai6caaaaa@914C@

Таким образом,

lim p0 f ˜ p,k,l g ˜ k,l L 2 (0,) =0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaawafabeWcba GaamiCaiabgkziUkaaicdaaeqakeaaciGGSbGaaiyAaiaac2gaaaWa auWaaeaadaaiaaqaaiaadAgaaiaawoWaamaaBaaaleaacaWGWbGaaG ilaiaadUgacaaISaGaamiBaaqabaGccqGHsisldaaiaaqaaiaadEga aiaawoWaamaaBaaaleaacaWGRbGaaGilaiaadYgaaeqaaaGccaGLjW UaayPcSdWaaSbaaSqaaiaadYeadaWgaaqaaiaaikdaaeqaaiaaiIca caaIWaGaaGilaiabg6HiLkaaiMcaaeqaaOGaaGypaiaaicdacaaISa aaaa@568A@  (2.25)

где

g ˜ k,l ρ = i m G k,l , x n x n m d x n L 2 (0,) 1 G k,l ρ, x n x n m d x n . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaaGaaabaGaam 4zaaGaay5adaWaaSbaaSqaaiaadUgacaaISaGaamiBaaqabaGcdaqa daqaaiabeg8aYbGaayjkaiaawMcaaiaai2dadaqadaqaaiabgkHiTi aadMgaaiaawIcacaGLPaaadaahaaWcbeqaaiaad2gaaaGcdaqbdaqa amaapehabeWcbaGaeyOeI0IaeyOhIukabaGaeyOhIukaniabgUIiYd GccaWGhbWaaSbaaSqaaiaadUgacaaISaGaamiBaaqabaGcdaqadaqa aiabgwSixlaaiYcacaWG4bWaaSbaaSqaaiaad6gaaeqaaaGccaGLOa GaayzkaaGaamiEamaaDaaaleaacaWGUbaabaGaamyBaaaakiaadsga caWG4bWaaSbaaSqaaiaad6gaaeqaaaGccaGLjWUaayPcSdWaa0baaS qaaiaadYeadaWgaaqaaiaaikdaaeqaaiaaiIcacaaIWaGaaGilaiab g6HiLkaaiMcaaeaacqGHsislcaaIXaaaaOWaa8qCaeqaleaacqGHsi slcqGHEisPaeaacqGHEisPa0Gaey4kIipakiaadEeadaWgaaWcbaGa am4AaiaaiYcacaWGSbaabeaakmaabmaabaGaeqyWdiNaaGilaiaadI hadaWgaaWcbaGaamOBaaqabaaakiaawIcacaGLPaaacaWG4bWaa0ba aSqaaiaad6gaaeaacaWGTbaaaOGaamizaiaadIhadaWgaaWcbaGaam OBaaqabaGccaaIUaaaaa@7E2B@  (2.26)

Согласно (2.26), имеем

g ˜ k,l L 2 (0,) =1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaafmaabaWaaa caaeaacaWGNbaacaGLdmaadaWgaaWcbaGaam4AaiaaiYcacaWGSbaa beaaaOGaayzcSlaawQa7amaaBaaaleaacaWGmbWaaSbaaeaacaaIYa aabeaacaaIOaGaaGimaiaaiYcacqGHEisPcaaIPaaabeaakiaai2da caaIXaaaaa@47D3@  (2.27)

и g ˜ k,l 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaaGaaabaGaam 4zaaGaay5adaWaaSbaaSqaaiaadUgacaaISaGaamiBaaqabaGccqGH HjIUcaaIWaaaaa@3F83@  вне отрезка [0,1ε] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiUfacaaIWa GaaGilaiaayIW7caaIXaGaeyOeI0IaeqyTduMaaGyxaaaa@40A1@ . Из (2.21) следует, что для выбранных номеров k= k 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadUgacaaI9a Gaam4AamaaBaaaleaacaaIWaaabeaaaaa@3C12@ , l= l 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadYgacaaI9a GaamiBamaaBaaaleaacaaIWaaabeaaaaa@3C14@  выполняется равенство

0 J (n1)/2+k1 tρ V pit ρ f ˜ p,k,l ρ dρ=0t0,p\{0}. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaapehabeWcba GaaGimaaqaaiabg6HiLcqdcqGHRiI8aOGaamOsamaaBaaaleaacaaI OaGaamOBaiabgkHiTiaaigdacaaIPaGaaG4laiaaikdacqGHRaWkca WGRbGaeyOeI0IaaGymaaqabaGcdaqadaqaaiaadshacqaHbpGCaiaa wIcacaGLPaaacaWGwbWaaeWaaeaadaqadaqaaiaadchacqGHsislca WGPbGaamiDaaGaayjkaiaawMcaaiabeg8aYbGaayjkaiaawMcaamaa GaaabaGaamOzaaGaay5adaWaaSbaaSqaaiaadchacaaISaGaam4Aai aaiYcacaWGSbaabeaakmaabmaabaGaeqyWdihacaGLOaGaayzkaaGa amizaiabeg8aYjaai2dacaaIWaGaaGzbVlabgcGiIiaadshatuuDJX wAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=5Nkfkaaicda caaISaGaaGzbVlabgcGiIiaadchacqGHiiIZcqWFDeIucaGGCbGaaG 4EaiaaicdacaaI9bGaaGOlaaaa@7CCE@  (2.28)

Заметим, что в (2.28) интегрирование фактически ведется по отрезку [0,1ε] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiUfacaaIWa GaaGilaiaayIW7caaIXaGaeyOeI0IaeqyTduMaaGyxaaaa@40A1@ . Поэтому, в частности,

0 1 J (n1)/2+k1 tρ V pit ρ f ˜ p,k,l ρ dρ=0t0,p\{0}. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaapehabeWcba GaaGimaaqaaiaaigdaa0Gaey4kIipakiaadQeadaWgaaWcbaGaaGik aiaad6gacqGHsislcaaIXaGaaGykaiaai+cacaaIYaGaey4kaSIaam 4AaiabgkHiTiaaigdaaeqaaOWaaeWaaeaacaWG0bGaeqyWdihacaGL OaGaayzkaaGaamOvamaabmaabaWaaeWaaeaacaWGWbGaeyOeI0Iaam yAaiaadshaaiaawIcacaGLPaaacqaHbpGCaiaawIcacaGLPaaadaai aaqaaiaadAgaaiaawoWaamaaBaaaleaacaWGWbGaaGilaiaadUgaca aISaGaamiBaaqabaGcdaqadaqaaiabeg8aYbGaayjkaiaawMcaaiaa dsgacqaHbpGCcaaI9aGaaGimaiaaywW7cqGHaiIicaWG0bWefv3ySL gznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWF+PsHcaaIWaGa aGilaiaaywW7cqGHaiIicaWGWbGaeyicI4Sae8xhHiLaaiixaiaaiU hacaaIWaGaaGyFaiaai6caaaa@7C18@  (2.29)

Переходя в (2.29) к пределу при p0+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadchacqGHsg IRcaaIWaGaey4kaScaaa@3D03@ , с учетом (2.25) получаем

0 1 J (n1)/2+k1 tρ V itρ g ˜ k,l ρ dρ=0t>0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaapehabeWcba GaaGimaaqaaiaaigdaa0Gaey4kIipakiaadQeadaWgaaWcbaGaaGik aiaad6gacqGHsislcaaIXaGaaGykaiaai+cacaaIYaGaey4kaSIaam 4AaiabgkHiTiaaigdaaeqaaOWaaeWaaeaacaWG0bGaeqyWdihacaGL OaGaayzkaaGaamOvamaabmaabaGaeyOeI0IaamyAaiaadshacqaHbp GCaiaawIcacaGLPaaadaaiaaqaaiaadEgaaiaawoWaamaaBaaaleaa caWGRbGaaGilaiaadYgaaeqaaOWaaeWaaeaacqaHbpGCaiaawIcaca GLPaaacaWGKbGaeqyWdiNaaGypaiaaicdacaaMf8UaeyiaIiIaamiD aiaai6dacaaIWaGaaGOlaaaa@631B@  (2.30)

Отсюда обычным образом следует, что g ˜ k,l (ρ)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaaGaaabaGaam 4zaaGaay5adaWaaSbaaSqaaiaadUgacaaISaGaamiBaaqabaGccaaI OaGaeqyWdiNaaGykaiaai2dacaaIWaaaaa@41A6@  п.в. на (0,1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiIcacaaIWa GaaGilaiaayIW7caaIXaGaaGykaaaa@3DA6@  (а при ρ1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeg8aYnrr1n gBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8NFQuOaaGym aaaa@4655@  равенство g ˜ k,l (ρ)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaaGaaabaGaam 4zaaGaay5adaWaaSbaaSqaaiaadUgacaaISaGaamiBaaqabaGccaaI OaGaeqyWdiNaaGykaiaai2dacaaIWaaaaa@41A6@  уже установлено). Действительно, умножая обе части (2.30) на t s MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadshadaahaa WcbeqaaiabgkHiTiaadohaaaaaaa@3B90@ , s(0,1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadohacqGHii IZcaaIOaGaaGimaiaaiYcacaaIXaGaaGykaaaa@3E91@ , и интегрируя на отрезке t[0,1] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadshacqGHii IZcaaIBbGaaGimaiaaiYcacaaMi8UaaGymaiaai2faaaa@408A@ , находим

0 1 g ˜ k,l ρ 0 1 t s J (n1)/2+k1 tρ V itρ dt dρ= = 0 1 ρ s1 g ˜ k,l ρ dρ 0 1 τ s J (n1)/2+k1 τ V iτ dτ=0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaWaa8qCae qaleaacaaIWaaabaGaaGymaaqdcqGHRiI8aOWaaacaaeaacaWGNbaa caGLdmaadaWgaaWcbaGaam4AaiaaiYcacaWGSbaabeaakmaabmaaba GaeqyWdihacaGLOaGaayzkaaWaaeWaaeaadaWdXbqabSqaaiaaicda aeaacaaIXaaaniabgUIiYdGccaWG0bWaaWbaaSqabeaacqGHsislca WGZbaaaOGaamOsamaaBaaaleaacaaIOaGaamOBaiabgkHiTiaaigda caaIPaGaaG4laiaaikdacqGHRaWkcaWGRbGaeyOeI0IaaGymaaqaba GcdaqadaqaaiaadshacqaHbpGCaiaawIcacaGLPaaacaWGwbWaaeWa aeaacqGHsislcaWGPbGaamiDaiabeg8aYbGaayjkaiaawMcaaiaads gacaWG0baacaGLOaGaayzkaaGaamizaiabeg8aYjaai2daaeaacaaI 9aWaa8qCaeqaleaacaaIWaaabaGaaGymaaqdcqGHRiI8aOGaeqyWdi 3aaWbaaSqabeaacaWGZbGaeyOeI0IaaGymaaaakmaaGaaabaGaam4z aaGaay5adaWaaSbaaSqaaiaadUgacaaISaGaamiBaaqabaGcdaqada qaaiabeg8aYbGaayjkaiaawMcaaiaadsgacqaHbpGCdaWdXbqabSqa aiaaicdaaeaacaaIXaaaniabgUIiYdGccqaHepaDdaahaaWcbeqaai abgkHiTiaadohaaaGccaWGkbWaaSbaaSqaaiaaiIcacaWGUbGaeyOe I0IaaGymaiaaiMcacaaIVaGaaGOmaiabgUcaRiaadUgacqGHsislca aIXaaabeaakmaabmaabaGaeqiXdqhacaGLOaGaayzkaaGaamOvamaa bmaabaGaeyOeI0IaamyAaiabes8a0bGaayjkaiaawMcaaiaadsgacq aHepaDcaaI9aGaaGimaiaai6caaaaa@9AEC@

Функция Бесселя J (n1)/2+k1 (τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadQeadaWgaa WcbaGaaGikaiaad6gacqGHsislcaaIXaGaaGykaiaai+cacaaIYaGa ey4kaSIaam4AaiabgkHiTiaaigdaaeqaaOGaaGikaiabes8a0jaaiM caaaa@45A3@  в точке τ=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabes8a0jaai2 dacaaIWaaaaa@3BCB@  имеет нуль порядка (n1)/2+k1(n3)/2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiIcacaWGUb GaeyOeI0IaaGymaiaaiMcacaaIVaGaaGOmaiabgUcaRiaadUgacqGH sislcaaIXaGaaGjbVlaaysW7tuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGqbaiab=5NkfkaaysW7caaMe8UaaGikaiaad6gacqGH sislcaaIZaGaaGykaiaai+cacaaIYaaaaa@5874@ . Поскольку в силу леммы 2.1 справедливо | τ (n3)/2 V(iτ)|=O(1),τ0+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiYhacqaHep aDdaahaaWcbeqaaiaaiIcacaWGUbGaeyOeI0IaaG4maiaaiMcacaaI VaGaaGOmaaaakiaadAfacaaIOaGaeyOeI0IaamyAaiabes8a0jaaiM cacaaI8bGaaGjbVlaaysW7caaI9aGaam4taiaaiIcacaaIXaGaaGyk aiaaiYcacaaMi8UaeqiXdqNaeyOKH4QaaGimaiabgUcaRaaa@564E@  при n>3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaad6gacaaI+a GaaG4maaaa@3AFD@  (или эта функция имеет логарифмическую особенность при n=3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaad6gacaaI9a GaaG4maaaa@3AFC@  ), последний написанный интеграл сходится и представляет собой аналитическую функцию Ψ(s) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabfI6azjaaiI cacaWGZbGaaGykaaaa@3C71@ .

Если бы при всех s(0,1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadohacqGHii IZcaaIOaGaaGimaiaaiYcacaaMi8UaaGymaiaaiMcaaaa@4022@  было Ψ(s)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabfI6azjaaiI cacaWGZbGaaGykaiaai2dacaaIWaaaaa@3DF2@ , то по теореме Мюнца мы имели бы J (n1)/2+k1 (τ)V(iτ)0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadQeadaWgaa WcbaGaaGikaiaad6gacqGHsislcaaIXaGaaGykaiaai+cacaaIYaGa ey4kaSIaam4AaiabgkHiTiaaigdaaeqaaOGaaGikaiabes8a0jaaiM cacaWGwbGaaGikaiabgkHiTiaadMgacqaHepaDcaaIPaGaeyyyIORa aGimaaaa@4E06@ . В силу аналитичности V MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadAfaaaa@3960@ , это значит, что V(s)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadAfacaaIOa Gaam4CaiaaiMcacaaI9aGaaGimaaaa@3D3E@  при всех s\{0} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadohacqGHii IZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1ri sjaacYfacaaI7bGaaGimaiaai2haaaa@495F@ , а ввиду (2.3) и (2.4) отсюда следует, что

μ\{0}, + e iμτ dτ a 2 + i 2 +τ 2 (n2)/2 =0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabgcGiIiabeY 7aTjabgIGioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbac faGae8xhHiLaaiixaiaaiUhacaaIWaGaaGyFaiaaiYcacaaMi8+aa8 qCaeqaleaacqGHsislcqGHEisPaeaacqGHRaWkcqGHEisPa0Gaey4k IipakmaalaaabaGaamyzamaaCaaaleqabaGaeyOeI0IaamyAaiabeY 7aTjabes8a0baakiaadsgacqaHepaDaeaadaqadaqaaiaadggadaah aaWcbeqaaiaaikdaaaGccqGHRaWkdaqadaqaaiaadMgadaGcaaqaai aaikdaaSqabaGccqGHRaWkcqaHepaDaiaawIcacaGLPaaadaahaaWc beqaaiaaikdaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiaaiIcaca WGUbGaeyOeI0IaaGOmaiaaiMcacaaIVaGaaGOmaaaaaaGccaaI9aGa aGimaiaai6caaaa@70AA@  (2.31)

Покажем, что утверждение (2.31) на самом деле несправедливо. Обозначим f(τ)=( a 2 + (i 2 +τ) 2 ) (n2)/2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadAgacaaIOa GaeqiXdqNaaGykaiaai2dacaaIOaGaamyyamaaCaaaleqabaGaaGOm aaaakiabgUcaRiaaiIcacaWGPbWaaOaaaeaacaaIYaaaleqaaOGaey 4kaSIaeqiXdqNaaGykamaaCaaaleqabaGaaGOmaaaakiaaiMcadaah aaWcbeqaaiabgkHiTiaaiIcacaWGUbGaeyOeI0IaaGOmaiaaiMcaca aIVaGaaGOmaaaaaaa@4EDF@   f(τ)=( a 2 + (i 2 +τ) 2 ) (n2)/2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadAgacaaIOa GaeqiXdqNaaGykaiaai2dacaaIOaGaamyyamaaCaaaleqabaGaaGOm aaaakiabgUcaRiaaiIcacaWGPbWaaOaaaeaacaaIYaaaleqaaOGaey 4kaSIaeqiXdqNaaGykamaaCaaaleqabaGaaGOmaaaakiaaiMcadaah aaWcbeqaaiabgkHiTiaaiIcacaWGUbGaeyOeI0IaaGOmaiaaiMcaca aIVaGaaGOmaaaaaaa@4EDF@ . При n4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaad6gatuuDJX wAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=5Nkfkaaisda aaa@458B@  имеем f L 1 () MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadAgacqGHii IZcaWGmbWaaSbaaSqaaiaaigdaaeqaaOGaaGikamrr1ngBPrwtHrhA YaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xhHiLaaGykaaaa@48D3@  и соотношение (2.31) означает, что преобразование Фурье функции f MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadAgaaaa@3970@  почти всюду равно нулю на MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamrr1ngBPrwtHr hAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xhHifaaa@433D@ . Но тогда и функция f почти всюду равна нулю на MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamrr1ngBPrwtHr hAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xhHifaaa@433D@  (см. следствие 9.1.11 в [26]), а это не так. При n=3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaad6gacaaI9a GaaG4maaaa@3AFC@  имеем f L 2 () MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadAgacqGHii IZcaWGmbWaaSbaaSqaaiaaikdaaeqaaOGaaGikamrr1ngBPrwtHrhA YaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xhHiLaaGykaaaa@48D4@ , и тогда в силу замечания к теореме 9.2.3 в [26] преобразование Фурье f ^ (μ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaaHaaabaGaam OzaaGaayPadaGaaGikaiabeY7aTjaaiMcaaaa@3D4D@  функции f MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadAgaaaa@3970@  почти всюду на MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamrr1ngBPrwtHr hAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xhHifaaa@433D@  равно

1 2π + f τ e iμτ dτ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaalaaabaGaaG ymaaqaamaakaaabaGaaGOmaiabec8aWbWcbeaaaaGcdaWdXbqabSqa aiabgkHiTiabg6HiLcqaaiabgUcaRiabg6HiLcqdcqGHRiI8aOGaam OzamaabmaabaGaeqiXdqhacaGLOaGaayzkaaGaamyzamaaCaaaleqa baGaeyOeI0IaamyAaiabeY7aTjabes8a0baakiaadsgacqaHepaDca aIUaaaaa@5129@

Комбинируя это утверждение с (2.31), приходим к выводу, что f ^ =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaaHaaabaGaam OzaaGaayPadaGaaGypaiaaicdaaaa@3BB3@  в L 2 () MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadYeadaWgaa WcbaGaaGOmaaqabaGccaaIOaWefv3ySLgznfgDOjdaryqr1ngBPrgi nfgDObcv39gaiuaacqWFDeIucaaIPaaaaa@4665@ . Но тогда и f=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadAgacaaI9a GaaGimaaaa@3AF1@  в L 2 () MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadYeadaWgaa WcbaGaaGOmaaqabaGccaaIOaWefv3ySLgznfgDOjdaryqr1ngBPrgi nfgDObcv39gaiuaacqWFDeIucaaIPaaaaa@4665@ , а это не так.

Поэтому найдется такой отрезок [α,β] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiUfacqaHXo qycaaISaGaaGjcVlabek7aIjaai2faaaa@3FD8@ , что Ψ(s)0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabfI6azjaaiI cacaWGZbGaaGykaiabgcMi5kaaicdaaaa@3EF2@  при s[α,β] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadohacqGHii IZcaaIBbGaeqySdeMaaGilaiaayIW7cqaHYoGycaaIDbaaaa@4254@  и, значит,

0 1 ρ s1 g ˜ k,l ρ dρ= 0 ρ s1 g ˜ k,l ρ dρ=0s α,β . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaapehabeWcba GaaGimaaqaaiaaigdaa0Gaey4kIipakiabeg8aYnaaCaaaleqabaGa am4CaiabgkHiTiaaigdaaaGcdaaiaaqaaiaadEgaaiaawoWaamaaBa aaleaacaWGRbGaaGilaiaadYgaaeqaaOWaaeWaaeaacqaHbpGCaiaa wIcacaGLPaaacaWGKbGaeqyWdiNaaGypamaapehabeWcbaGaaGimaa qaaiabg6HiLcqdcqGHRiI8aOGaeqyWdi3aaWbaaSqabeaacaWGZbGa eyOeI0IaaGymaaaakmaaGaaabaGaam4zaaGaay5adaWaaSbaaSqaai aadUgacaaISaGaamiBaaqabaGcdaqadaqaaiabeg8aYbGaayjkaiaa wMcaaiaadsgacqaHbpGCcaaI9aGaaGimaiaaywW7cqGHaiIicaWGZb GaeyicI48aamWaaeaacqaHXoqycaaISaGaaGjcVlabek7aIbGaay5w aiaaw2faaiaai6caaaa@6E68@  (2.32)

Из (2.32) и теоремы об обращении преобразования Меллина (см. [21, с. 73]) следует g ˜ k,l =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaaGaaabaGaam 4zaaGaay5adaWaaSbaaSqaaiaadUgacaaISaGaamiBaaqabaGccaaI 9aGaaGimaaaa@3E81@  п.в. на + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamrr1ngBPrwtHr hAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xhHi1aaSbaaSqaaiab gUcaRaqabaaaaa@444B@ . Полученное равенство противоречит (2.27). Тем самым показано, что случай 2) невозможен ни при каких k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadUgaaaa@3975@ , l MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadYgaaaa@3976@ .

Таким образом, реализуется случай 1), поэтому в силу (2.22) имеем

S n2 h x ρ,φ , x n Y k,l φ dφ=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaapefabeWcba Gaam4uamaaCaaabeqaaiaad6gacqGHsislcaaIYaaaaaqab0Gaey4k IipakiaadIgadaqadaqaaiqadIhagaqbamaabmaabaGaeqyWdiNaaG ilaiabeA8aQbGaayjkaiaawMcaaiaaiYcacaaMi8UaamiEamaaBaaa leaacaWGUbaabeaaaOGaayjkaiaawMcaaiaadMfadaWgaaWcbaGaam 4AaiaaiYcacaWGSbaabeaakmaabmaabaGaeqOXdOgacaGLOaGaayzk aaGaamizaiabeA8aQjaai2dacaaIWaaaaa@5730@

для всех k=0,1, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadUgacaaI9a GaaGimaiaaiYcacaaIXaGaaGilaiablAcilbaa@3E3F@ ; l=1,, d k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadYgacaaI9a GaaGymaiaaiYcacqWIMaYscaaISaGaamizamaaBaaaleaacaWGRbaa beaaaaa@3F8B@  и для п.в. ρ0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeg8aYnrr1n gBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8NFQuOaaGim aaaa@4654@ , x n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadIhadaWgaa WcbaGaamOBaaqabaGccqGHiiIZtuuDJXwAK1uy0HMmaeHbfv3ySLgz G0uy0HgiuD3BaGqbaiab=1risbaa@46E7@ . Поскольку система сферических функций { Y k,l (φ)} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiUhacaWGzb WaaSbaaSqaaiaadUgacaaISaGaamiBaaqabaGccaaIOaGaeqOXdOMa aGykaiaai2haaaa@415E@  образует ортонормированный базис в L 2 ( S n2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadYeadaWgaa WcbaGaaGOmaaqabaGccaaIOaGaam4uamaaCaaaleqabaGaamOBaiab gkHiTiaaikdaaaGccaaIPaaaaa@3F58@ , отсюда следует, что

h x ρ,φ , x n =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadIgadaqada qaaiqadIhagaqbamaabmaabaGaeqyWdiNaaGilaiabeA8aQbGaayjk aiaawMcaaiaaiYcacaaMi8UaamiEamaaBaaaleaacaWGUbaabeaaaO GaayjkaiaawMcaaiaai2dacaaIWaaaaa@47AE@

для п.в. ρ0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeg8aYnrr1n gBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8NFQuOaaGim aaaa@4654@ , x n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadIhadaWgaa WcbaGaamOBaaqabaGccqGHiiIZtuuDJXwAK1uy0HMmaeHbfv3ySLgz G0uy0HgiuD3BaGqbaiab=1risbaa@46E7@ , φ S n2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeA8aQjabgI GiolaadofadaahaaWcbeqaaiaad6gacqGHsislcaaIYaaaaaaa@3F67@ . Поэтому h(x) = 0 для п.в. xD MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadIhacqGHii IZcaWGebaaaa@3BCF@ . Теорема доказана.

Покажем, как из доказанной теоремы следует единственность решения многомерного уравнения М.М. Лаврентьева (1.3) в пространстве произвольной размерности n3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaad6gatuuDJX wAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=5Nkfkaaioda aaa@458A@ . Справедливо следующее утверждение (см. теорему 4 в [27]).

Лемма 2.2. Пусть D n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadseacqGHck cZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1ri snaaCaaaleqabaGaamOBaaaaaaa@4722@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3796@  ограниченная область с кусочно-гладкой границей, n3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaad6gatuuDJX wAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=5Nkfkaaioda aaa@458A@ . Тогда справедливо ортогональное разложение

L 2 (D)=H(D)O(D), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadYeadaWgaa WcbaGaaGOmaaqabaGccaaIOaGaamiraiaaiMcacaaI9aWefv3ySLgz nfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFlecscaaIOaGaam iraiaaiMcacqGHvksXcqWFoe=tcaaIOaGaamiraiaaiMcacaaISaaa aa@50AD@

где H(D) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae83cHGKaaGikaiaadsea caaIPaaaaa@4536@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3796@  множество гармонических функций, принадлежащих L 2 (D) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadYeadaWgaa WcbaGaaGOmaaqabaGccaaIOaGaamiraiaaiMcaaaa@3C76@ ,

O(D)= w L 2 (D) r n \ D ¯ , D w(x)dx |rx | n2 =0 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8NdX=KaaGikaiaadsea caaIPaGaaGypamaacmaabaGaam4DaiabgIGiolaadYeadaWgaaWcba GaaGOmaaqabaGccaaIOaGaamiraiaaiMcacaaMe8UaaGjcVlaaysW7 daabbaqaaiaaysW7caaMe8UaeyiaIiIaamOCaiabgIGioprr1ngBPr wtHrhAYaqehuuDJXwAKbstHrhAGq1DVbacgaGae4xhHi1aaWbaaSqa beaacaWGUbaaaOGaaiixamaanaaabaGaamiraaaacaaISaGaaGjcVp aapefabeWcbaGaamiraaqab0Gaey4kIipakmaalaaabaGaam4Daiaa iIcacaWG4bGaaGykaiaadsgacaWG4baabaGaaGiFaiaadkhacqGHsi slcaWG4bGaaGiFamaaCaaaleqabaGaamOBaiabgkHiTiaaikdaaaaa aOGaaGypaiaaicdaaiaawEa7aaGaay5Eaiaaw2haaiaai6caaaa@7E6C@

Рассуждая аналогично доказательству леммы 2.2 в [13], приходим к следствию леммы 2.2.

Лемма 2.3. Пусть S n \ D ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadofacqGHck cZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1ri snaaCaaaleqabaGaamOBaaaakiaacYfadaqdaaqaaiaadseaaaaaaa@48F5@ , n3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaad6gatuuDJX wAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=5Nkfkaaioda aaa@458A@ , есть множество единственности. Тогда множество линейных комбинаций функций |rx | (n2) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiYhacaWGYb GaeyOeI0IaamiEaiaaiYhadaahaaWcbeqaaiabgkHiTiaaiIcacaWG UbGaeyOeI0IaaGOmaiaaiMcaaaaaaa@428D@ , rS MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadkhacqGHii IZcaWGtbaaaa@3BD8@ , плотно в H(D) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae83cHGKaaGikaiaadsea caaIPaaaaa@4536@  в смысле метрики пространства L 2 (D) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadYeadaWgaa WcbaGaaGOmaaqabaGccaaIOaGaamiraiaaiMcaaaa@3C76@ .

Здесь под множеством единственности понимается такое множество S n \ D ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadofacqGHck cZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1ri snaaCaaaleqabaGaamOBaaaakiaacYfadaqdaaqaaiaadseaaaaaaa@48F5@ , что любая гармоническая в n \ D ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamrr1ngBPrwtHr hAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xhHi1aaWbaaSqabeaa caWGUbaaaOGaaiixamaanaaabaGaamiraaaaaaa@4621@  функция u, равная нулю во всех точках множества S и стремящаяся к нулю на бесконечности, тождественно равна нулю на всем множестве n \ D ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamrr1ngBPrwtHr hAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xhHi1aaWbaaSqabeaa caWGUbaaaOGaaiixamaanaaabaGaamiraaaaaaa@4621@ . Очевидным примером множества единственности служит любая гиперплоскость Π MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabfc6aqbaa@3A03@  размерности n MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3796@ 1, не пересекающая D ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaanaaabaGaam iraaaaaaa@395F@ , что следует из принципа максимума для гармонических функций.

Рассмотрим теперь уравнение (1.3) с нулевой правой частью:

D ξ x dx xy n2 xz n2 =0, y,z Y×Z. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaapefabeWcba Gaamiraaqab0Gaey4kIipakmaalaaabaGaeqOVdG3aaeWaaeaacaWG 4baacaGLOaGaayzkaaGaaGjcVlaadsgacaWG4baabaWaaqWaaeaaca WG4bGaeyOeI0IaamyEaaGaay5bSlaawIa7amaaCaaaleqabaGaamOB aiabgkHiTiaaikdaaaGcdaabdaqaaiaadIhacqGHsislcaWG6baaca GLhWUaayjcSdWaaWbaaSqabeaacaWGUbGaeyOeI0IaaGOmaaaaaaGc caaI9aGaaGimaiaaiYcacaaMf8+aaeWaaeaacaWG5bGaaGilaiaayI W7caaMe8UaaGjbVlaadQhaaiaawIcacaGLPaaacqGHiiIZcaWGzbGa ey41aqRaamOwaiaai6caaaa@67EA@  (2.33)

Интеграл в левой части (2.33) представляет собой аналитическую функцию yY MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadMhacqGHii IZcaWGzbaaaa@3BE5@  и zZ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadQhacqGHii IZcaWGAbaaaa@3BE7@ , и аналитическое продолжение позволяет установить это равенство для всех (y,z)Y×Π MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiIcacaWG5b GaaGilaiaayIW7caaMe8UaaGjbVlaadQhacaaIPaGaeyicI4Saamyw aiabgEna0kabfc6aqbaa@473F@ . Семейство {|xz | (n2) ,zΠ} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiUhacaaI8b GaamiEaiabgkHiTiaadQhacaaI8bWaaWbaaSqabeaacqGHsislcaaI OaGaamOBaiabgkHiTiaaikdacaaIPaaaaOGaaGilaiaadQhacqGHii IZcqqHGoaucaaI9baaaa@4962@  обладает свойством полноты в множестве H(D) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadIeacaaIOa GaamiraiaaiMcaaaa@3B80@ , поэтому в силу (2.33) справедливо соотношение

D u x 1 xy n2 ξ x dx=0yY,uH D . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaapefabeWcba Gaamiraaqab0Gaey4kIipakiaadwhadaqadaqaaiaadIhaaiaawIca caGLPaaacaaMi8+aaSaaaeaacaaIXaaabaWaaqWaaeaacaWG4bGaey OeI0IaamyEaaGaay5bSlaawIa7amaaCaaaleqabaGaamOBaiabgkHi TiaaikdaaaaaaOGaaGjcVlabe67a4naabmaabaGaamiEaaGaayjkai aawMcaaiaadsgacaWG4bGaaGypaiaaicdacaaMf8UaeyiaIiIaamyE aiabgIGiolaadMfacaaISaGaaGjcVlaayIW7caaMe8UaamyDaiabgI Gioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae83c HG0aaeWaaeaacaWGebaacaGLOaGaayzkaaGaaGOlaaaa@6ECB@

Из теоремы 2.1 тогда получаем, что ξ(x)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabe67a4jaaiI cacaWG4bGaaGykaiaai2dacaaIWaaaaa@3E2B@  почти всюду в D и тем самым оператор интегрального уравнения (1.2) инъективен. Мы доказали следующую теорему.

Теорема 2.2. Пусть n3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaad6gatuuDJX wAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=5Nkfkaaioda aaa@458A@ , D n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadseacqGHck cZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1ri snaaCaaaleqabaGaamOBaaaaaaa@4722@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3796@  ограниченная область с кусочно-гладкой границей, Y n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadMfacqGHck cZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1ri snaaCaaaleqabaGaamOBaaaaaaa@4737@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3796@  открытый интервал или отрезок на произвольной прямой L n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadYeacqGHck cZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1ri snaaCaaaleqabaGaamOBaaaaaaa@472A@ , Y D ¯ = MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadMfacqGHPi YXdaqdaaqaaiaadseaaaGaaGypaiabgwGigdaa@3E1B@ , а Z – область в (n-1)-мерной гиперплоскости Π n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabfc6aqjabgk Oimprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xh Hi1aaWbaaSqabeaacaWGUbaaaaaa@47D7@ , не пересекающей D ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaanaaabaGaam iraaaaaaa@395F@ . Тогда многомерное уравнение М.М. Лаврентьева (1.3) имеет не более одного решения при любой правой части f.

В качестве непосредственного применения доказанной теоремы укажем вывод о единственности решения обратной коэффициентной задачи для волнового уравнения (1.1) в труехмерном пространстве в случае, когда множество источников Y и множество детекторов Z имеют вид, указанный в теореме 2.2. При этом мы допускаем, что прямая, на которой лежит промежуток Y, может пересекать зондируемую область D.

3. ЧИСЛЕННЫЕ ЭКСПЕРИМЕНТЫ

Далее приводятся результаты численных экспериментов по решению уравнения М.М. Лаврентьева (1.2) в пространстве 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamrr1ngBPrwtHr hAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xhHi1aaWbaaSqabeaa caaIZaaaaaaa@4427@  с различными расположениями множеств источников Y и детекторов Z относительно друг друга и множества D. Как показано выше, к этому уравнению приводится коэффициентная обратная задача для уравнения акустики (1.1). В отличие от предыдущих исследований, таких как в [6], мы допускаем, что прямая L, содержащая промежуток Y, на котором располагаются источники звуковых волн, может пересекать область неоднородности D; выше доказана единственность решения уравнения (1.2) в этом случае. В качестве области неоднородности D выбирается единичный куб (0,1) 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiIcacaaIWa GaaGilaiaaigdacaaIPaWaaWbaaSqabeaacaaIZaaaaaaa@3CFF@ , в качестве множества детекторов Z – прямоугольник, параллельный одной из граней куба. Мы строим модельные примеры с заранее известным решением ξ * (x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabe67a4naaCa aaleqabaGaaGOkaaaakiaaiIcacaWG4bGaaGykaaaa@3D95@ , вычисляя по нему функцию f(y,z) в правой части (1.2), а затем решаем эти примеры с помощью описанного в [6] алгоритма. А именно, вводя на множествах D, Y, Z равномерные сетки { x ¯ ijk },{ y ¯ r },{ z ¯ pq },0i,j,k;p,q,rN MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiUhaceWG4b GbaebadaWgaaWcbaGaamyAaiaadQgacaWGRbaabeaakiaai2hacaaI SaGaaGjcVlaaiUhaceWG5bGbaebadaWgaaWcbaGaamOCaaqabaGcca aI9bGaaGilaiaayIW7caaI7bGabmOEayaaraWaaSbaaSqaaiaadcha caWGXbaabeaakiaai2hacaaISaGaaGjcVlaaicdatuuDJXwAK1uy0H MmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1NkekaadMgacaaISaGa amOAaiaaiYcacaWGRbGaaG4oaiaadchacaaISaGaamyCaiaaiYcaca WGYbGae8xFQqOaamOtaaaa@66ED@  соответственно и дискретизируя интегральное уравнение (1.2), мы получаем систему линейных уравнений

i,j,k=0 N1 a ijk,pqr ξ ijk =f y ¯ r , z ¯ pq ;0p,q,rN1. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaaqahabeWcba GaamyAaiaaiYcacaWGQbGaaGilaiaadUgacaaI9aGaaGimaaqaaiaa d6eacqGHsislcaaIXaaaniabggHiLdGccaWGHbWaaSbaaSqaaiaadM gacaWGQbGaam4AaiaaiYcacaWGWbGaamyCaiaadkhaaeqaaOGaeqOV dG3aaSbaaSqaaiaadMgacaWGQbGaam4AaaqabaGccaaI9aGaamOzam aabmaabaGabmyEayaaraWaaSbaaSqaaiaadkhaaeqaaOGaaGilaiqa dQhagaqeamaaBaaaleaacaWGWbGaamyCaaqabaaakiaawIcacaGLPa aacaaI7aGaaGjbVlaaysW7caaIWaWefv3ySLgznfgDOjdaryqr1ngB PrginfgDObcv39gaiuaacqWF9PcHcaWGWbGaaGilaiaadghacaaISa GaamOCaiab=1Nkekaad6eacqGHsislcaaIXaGaaGOlaaaa@71D7@  (3.1)

Здесь ξ ijk MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabe67a4naaBa aaleaacaWGPbGaamOAaiaadUgaaeqaaaaa@3D41@ , 0i,j,kN1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaicdatuuDJX wAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1NkekaadMga caaISaGaamOAaiaaiYcacaWGRbGae8xFQqOaamOtaiabgkHiTiaaig daaaa@4CF6@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3794@  аппроксимации для значений ξ * ( x ¯ ijk ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabe67a4naaCa aaleqabaGaaGOkaaaakiaaiIcaceWG4bGbaebadaWgaaWcbaGaamyA aiaadQgacaWGRbaabeaakiaaiMcaaaa@40B0@  искомой функции ξ * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabe67a4naaCa aaleqabaGaaGOkaaaaaaa@3B29@  в узлах сетки,

a ijk,pqr = h 3 x ¯ ijk y ¯ r x ¯ ijk z ¯ pq ,h= 1 N . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadggadaWgaa WcbaGaamyAaiaadQgacaWGRbGaaGilaiaadchacaWGXbGaamOCaaqa baGccaaI9aWaaSaaaeaacaWGObWaaWbaaSqabeaacaaIZaaaaaGcba WaaqWaaeaaceWG4bGbaebadaWgaaWcbaGaamyAaiaadQgacaWGRbaa beaakiabgkHiTiqadMhagaqeamaaBaaaleaacaWGYbaabeaaaOGaay 5bSlaawIa7amaaemaabaGabmiEayaaraWaaSbaaSqaaiaadMgacaWG QbGaam4AaaqabaGccqGHsislceWG6bGbaebadaWgaaWcbaGaamiCai aadghaaeqaaaGccaGLhWUaayjcSdaaaiaaiYcacaaMf8UaamiAaiaa i2dadaWcaaqaaiaaigdaaeaacaWGobaaaiaai6caaaa@5ED5@

Регуляризация системы (3.1) по схеме Тихонова приводит к уравнению

A * A+αE ξ α = A * f, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaabmaabaGaam yqamaaCaaaleqabaGaaGOkaaaakiaadgeacqGHRaWkcqaHXoqycaWG fbaacaGLOaGaayzkaaGaeqOVdG3aaSbaaSqaaiabeg7aHbqabaGcca aI9aGaamyqamaaCaaaleqabaGaaGOkaaaakiaadAgacaaISaaaaa@4781@

где A= a ijk,pqr N 3 × N 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadgeacaaI9a GaamyyamaaBaaaleaacaWGPbGaamOAaiaadUgacaaISaGaamiCaiaa dghacaWGYbaabeaakiabgIGioprr1ngBPrwtHrhAYaqeguuDJXwAKb stHrhAGq1DVbacfaGae8xhHi1aaWbaaSqabeaacaWGobWaaWbaaeqa baGaaG4maaaacqGHxdaTcaWGobWaaWbaaeqabaGaaG4maaaaaaaaaa@5377@ , f=( f pqr ) N 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadAgacaaI9a GaaGikaiaadAgadaWgaaWcbaGaamiCaiaadghacaWGYbaabeaakiaa iMcacqGHiiIZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaG qbaiab=1risnaaCaaaleqabaGaamOtamaaCaaabeqaaiaaiodaaaaa aaaa@4DBA@ , α>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeg7aHjaai6 dacaaIWaaaaa@3BA6@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3794@  параметр регуляризации. В расчетах полагаем N=20 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaad6eacaaI9a GaaGOmaiaaicdaaaa@3B95@ , α =10 11 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeg7aHjaai2 dacaaIXaGaaGimamaaCaaaleqabaGaeyOeI0IaaGymaiaaigdaaaaa aa@3EF0@ . Близость ξ α MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabe67a4naaBa aaleaacqaHXoqyaeqaaaaa@3C13@  к точному решению определяется нормой разности ξ α ξ * L 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaGabaiab=vIiqj abe67a4naaBaaaleaacqaHXoqyaeqaaOGaeyOeI0IaeqOVdG3aaWba aSqabeaacaaIQaaaaOGae8xjIa1aaSbaaSqaaiaadYeadaWgaaqaai aaikdaaeqaaaqabaaaaa@43D6@  и относительной погрешностью

Δ= ξ α ξ * L 2 ξ * L 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabfs5aejaai2 dadaWcaaqaamaafmaabaGaeqOVdG3aaSbaaSqaaiabeg7aHbqabaGc cqGHsislcqaH+oaEdaahaaWcbeqaaiaaiQcaaaaakiaawMa7caGLkW oadaWgaaWcbaGaamitamaaBaaabaGaaGOmaaqabaaabeaaaOqaamaa fmaabaGaeqOVdG3aaWbaaSqabeaacaaIQaaaaaGccaGLjWUaayPcSd WaaSbaaSqaaiaadYeadaWgaaqaaiaaikdaaeqaaaqabaaaaOGaaGOl aaaa@4F71@

Рассматриваются неоднородности трех различных типов, описываемые функциями

ξ 1 * x (1) , x (2) , x (3) =exp 81 x (1) 0.5 2 + x (2) 0.4 2 + x (3) 0.5 2 + +exp 81 x (1) 0.5 2 + x (2) 0.8 2 + x (3) 0.5 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaGaeqOVdG 3aa0baaSqaaiaaigdaaeaacaaIQaaaaOWaaeWaaeaacaWG4bWaaWba aSqabeaacaaIOaGaaGymaiaaiMcaaaGccaaISaGaamiEamaaCaaale qabaGaaGikaiaaikdacaaIPaaaaOGaaGilaiaadIhadaahaaWcbeqa aiaaiIcacaaIZaGaaGykaaaaaOGaayjkaiaawMcaaiabg2da9iaabw gacaqG4bGaaeiCamaabmaabaGaeyOeI0IaaGioaiaaigdadaqadaqa amaabmaabaGaamiEamaaCaaaleqabaGaaGikaiaaigdacaaIPaaaaO GaeyOeI0IaaGimaiaai6cacaaI1aaacaGLOaGaayzkaaWaaWbaaSqa beaacaaIYaaaaOGaey4kaSIaaGjbVpaabmaabaGaamiEamaaCaaale qabaGaaGikaiaaikdacaaIPaaaaOGaeyOeI0IaaGimaiaai6cacaaI 0aaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaey4kaSYaae WaaeaacaWG4bWaaWbaaSqabeaacaaIOaGaaG4maiaaiMcaaaGccqGH sislcaaIWaGaaGOlaiaaiwdaaiaawIcacaGLPaaadaahaaWcbeqaai aaikdaaaaakiaawIcacaGLPaaaaiaawIcacaGLPaaacqGHRaWkaeaa cqGHRaWkcaaMe8UaaeyzaiaabIhacaqGWbWaaeWaaeaacqGHsislca aI4aGaaGymamaabmaabaWaaeWaaeaacaWG4bWaaWbaaSqabeaacaaI OaGaaGymaiaaiMcaaaGccqGHsislcaaIWaGaaGOlaiaaiwdaaiaawI cacaGLPaaadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaMe8+aaeWa aeaacaWG4bWaaWbaaSqabeaacaaIOaGaaGOmaiaaiMcaaaGccqGHsi slcaaIWaGaaGOlaiaaiIdaaiaawIcacaGLPaaadaahaaWcbeqaaiaa ikdaaaGccqGHRaWkdaqadaqaaiaadIhadaahaaWcbeqaaiaaiIcaca aIZaGaaGykaaaakiabgkHiTiaaicdacaaIUaGaaGynaaGaayjkaiaa wMcaamaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaaaGaayjkai aawMcaaiaaiYcaaaaa@9AD9@  (3.2)

ξ 2 * x (1) , x (2) , x (3) =exp 100 x (1) 0.5 2 + x (2) 0.4 2 + x (3) 0.8 2 + +exp 40 x (1) 0.5 2 + x (2) 0.8 2 + x (3) 0.5 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaGaeqOVdG 3aa0baaSqaaiaaikdaaeaacaaIQaaaaOWaaeWaaeaacaWG4bWaaWba aSqabeaacaaIOaGaaGymaiaaiMcaaaGccaaISaGaamiEamaaCaaale qabaGaaGikaiaaikdacaaIPaaaaOGaaGilaiaadIhadaahaaWcbeqa aiaaiIcacaaIZaGaaGykaaaaaOGaayjkaiaawMcaaiabg2da9iaabw gacaqG4bGaaeiCamaabmaabaGaeyOeI0IaaGymaiaaicdacaaIWaWa aeWaaeaadaqadaqaaiaadIhadaahaaWcbeqaaiaaiIcacaaIXaGaaG ykaaaakiabgkHiTiaaicdacaaIUaGaaGynaaGaayjkaiaawMcaamaa CaaaleqabaGaaGOmaaaakiabgUcaRiaaysW7daqadaqaaiaadIhada ahaaWcbeqaaiaaiIcacaaIYaGaaGykaaaakiabgkHiTiaaicdacaaI UaGaaGinaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiabgU caRmaabmaabaGaamiEamaaCaaaleqabaGaaGikaiaaiodacaaIPaaa aOGaeyOeI0IaaGimaiaai6cacaaI4aaacaGLOaGaayzkaaWaaWbaaS qabeaacaaIYaaaaaGccaGLOaGaayzkaaaacaGLOaGaayzkaaGaey4k aScabaGaey4kaSIaaGjbVlaabwgacaqG4bGaaeiCamaabmaabaGaey OeI0IaaGinaiaaicdadaqadaqaamaabmaabaGaamiEamaaCaaaleqa baGaaGikaiaaigdacaaIPaaaaOGaeyOeI0IaaGimaiaai6cacaaI1a aacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGjb VpaabmaabaGaamiEamaaCaaaleqabaGaaGikaiaaikdacaaIPaaaaO GaeyOeI0IaaGimaiaai6cacaaI4aaacaGLOaGaayzkaaWaaWbaaSqa beaacaaIYaaaaOGaey4kaSYaaeWaaeaacaWG4bWaaWbaaSqabeaaca aIOaGaaG4maiaaiMcaaaGccqGHsislcaaIWaGaaGOlaiaaiwdaaiaa wIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaaai aawIcacaGLPaaacaaISaaaaaa@9B8A@  (3.3)

ξ 3 * x (1) , x (2) , x (3) =exp 50 x (1) 0.3 2 + x (2) 0.3 2 + x (3) 0.6 2 + +exp 50 x (1) 0.7 2 + x (2) 0.7 2 + x (3) 0.6 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaGaeqOVdG 3aa0baaSqaaiaaiodaaeaacaaIQaaaaOWaaeWaaeaacaWG4bWaaWba aSqabeaacaaIOaGaaGymaiaaiMcaaaGccaaISaGaamiEamaaCaaale qabaGaaGikaiaaikdacaaIPaaaaOGaaGilaiaadIhadaahaaWcbeqa aiaaiIcacaaIZaGaaGykaaaaaOGaayjkaiaawMcaaiabg2da9iaabw gacaqG4bGaaeiCamaabmaabaGaeyOeI0IaaGynaiaaicdadaqadaqa amaabmaabaGaamiEamaaCaaaleqabaGaaGikaiaaigdacaaIPaaaaO GaeyOeI0IaaGimaiaai6cacaaIZaaacaGLOaGaayzkaaWaaWbaaSqa beaacaaIYaaaaOGaey4kaSIaaGjbVpaabmaabaGaamiEamaaCaaale qabaGaaGikaiaaikdacaaIPaaaaOGaeyOeI0IaaGimaiaai6cacaaI ZaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaey4kaSYaae WaaeaacaWG4bWaaWbaaSqabeaacaaIOaGaaG4maiaaiMcaaaGccqGH sislcaaIWaGaaGOlaiaaiAdaaiaawIcacaGLPaaadaahaaWcbeqaai aaikdaaaaakiaawIcacaGLPaaaaiaawIcacaGLPaaacqGHRaWkaeaa cqGHRaWkcaaMe8UaaeyzaiaabIhacaqGWbWaaeWaaeaacqGHsislca aI1aGaaGimamaabmaabaWaaeWaaeaacaWG4bWaaWbaaSqabeaacaaI OaGaaGymaiaaiMcaaaGccqGHsislcaaIWaGaaGOlaiaaiEdaaiaawI cacaGLPaaadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaMe8+aaeWa aeaacaWG4bWaaWbaaSqabeaacaaIOaGaaGOmaiaaiMcaaaGccqGHsi slcaaIWaGaaGOlaiaaiEdaaiaawIcacaGLPaaadaahaaWcbeqaaiaa ikdaaaGccqGHRaWkdaqadaqaaiaadIhadaahaaWcbeqaaiaaiIcaca aIZaGaaGykaaaakiabgkHiTiaaicdacaaIUaGaaGOnaaGaayjkaiaa wMcaamaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaaaGaayjkai aawMcaaiaai6caaaaa@9AD5@  (3.4)

Первая и третья функции описывают две неоднородности одного размера, расположенные на одинаковой высоте ( x (3) =0.5 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadIhadaahaa WcbeqaaiaaiIcacaaIZaGaaGykaaaakiaai2dacaaIWaGaaGOlaiaa iwdaaaa@3ED3@  и x (3) =0.6 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadIhadaahaa WcbeqaaiaaiIcacaaIZaGaaGykaaaakiaai2dacaaIWaGaaGOlaiaa iAdaaaa@3ED4@  соответственно), с центрами в точках (0.5,0.4,0.5) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiIcacaaIWa GaaGOlaiaaiwdacaaISaGaaGimaiaai6cacaaI0aGaaGilaiaaicda caaIUaGaaGynaiaaiMcaaaa@41E8@ , (0.5,0.8,0.5) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiIcacaaIWa GaaGOlaiaaiwdacaaISaGaaGimaiaai6cacaaI4aGaaGilaiaaicda caaIUaGaaGynaiaaiMcaaaa@41EC@  и (0.3,0.3,0.6) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiIcacaaIWa GaaGOlaiaaiodacaaISaGaaGimaiaai6cacaaIZaGaaGilaiaaicda caaIUaGaaGOnaiaaiMcaaaa@41E6@ , (0.7,0.7,0.6) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiIcacaaIWa GaaGOlaiaaiEdacaaISaGaaGimaiaai6cacaaI3aGaaGilaiaaicda caaIUaGaaGOnaiaaiMcaaaa@41EE@ . Вторая функция описывает две неоднородности различной геометрии, расположенные на высотах x (3) =0.5 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadIhadaahaa WcbeqaaiaaiIcacaaIZaGaaGykaaaakiaai2dacaaIWaGaaGOlaiaa iwdaaaa@3ED3@  и x (3) =0.8 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadIhadaahaa WcbeqaaiaaiIcacaaIZaGaaGykaaaakiaai2dacaaIWaGaaGOlaiaa iIdaaaa@3ED6@ , с центрами в точках (0.5,0.8,0.5) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiIcacaaIWa GaaGOlaiaaiwdacaaISaGaaGimaiaai6cacaaI4aGaaGilaiaaicda caaIUaGaaGynaiaaiMcaaaa@41EC@  и (0.5,0.4,0.8) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiIcacaaIWa GaaGOlaiaaiwdacaaISaGaaGimaiaai6cacaaI0aGaaGilaiaaicda caaIUaGaaGioaiaaiMcaaaa@41EB@  соответственно. Значения относительной погрешности Δ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabfs5aebaa@39EB@  для функций (3.2) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3794@ (3.4) при разных Y и Z представлены в табл. 1 и 2. Первый столбец содержит порядковый номер эксперимента, во втором выписаны расположения областей Y и Z. Отдельные численные эксперименты проиллюстрированы на фиг. 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3794@ 4. На этих рисунках сверху вниз представлены графики точных и приближенных функций ξ(,, x (3) ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabe67a4jaaiI cacqGHflY1caaISaGaeyyXICTaaGilaiaadIhadaahaaWcbeqaaiaa iIcacaaIZaGaaGykaaaakiaaiMcaaaa@4503@  в порядке возрастания значения x (3) =0.2,0.45,0.7,0.95 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadIhadaahaa WcbeqaaiaaiIcacaaIZaGaaGykaaaakiaai2dacaaIWaGaaGOlaiaa ikdacaaISaGaaGjcVlaaysW7caaIWaGaaGOlaiaaisdacaaI1aGaaG ilaiaayIW7caaMe8UaaGimaiaai6cacaaI3aGaaGilaiaayIW7caaM e8UaaGimaiaai6cacaaI5aGaaGynaaaa@5262@ . В правой колонке графиков расположены изображения точного решения ξ * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabe67a4naaCa aaleqabaGaaGOkaaaaaaa@3B29@ , в левой – соответствующие изображения приближенных решений ξ α MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabe67a4naaBa aaleaacqaHXoqyaeqaaaaa@3C13@ .

 

Таблица 1. Продолжение отрезка источников Y пересекает область D и прямоугольник Z. Указаны относительные погрешности аппроксимации функций ξ 1 * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabe67a4naaDa aaleaacaaIXaaabaGaaGOkaaaaaaa@3BE4@ , ξ 2 * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabe67a4naaDa aaleaacaaIYaaabaGaaGOkaaaaaaa@3BE5@ , ξ 3 * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabe67a4naaDa aaleaacaaIZaaabaGaaGOkaaaaaaa@3BE6@

N MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaad6eaaaa@3958@

Множества Y и Z

ξ 1 * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabe67a4naaDa aaleaacaaIXaaabaGaaGOkaaaaaaa@3BE4@  

ξ 2 * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabe67a4naaDa aaleaacaaIYaaabaGaaGOkaaaaaaa@3BE5@  

ξ 3 * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabe67a4naaDa aaleaacaaIZaaabaGaaGOkaaaaaaa@3BE6@  

1

Y MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadMfaaaa@3963@  – отрезок с концами (0.5,0.5,1.1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiIcacaaIWa GaaGOlaiaaiwdacaaISaGaaGimaiaai6cacaaI1aGaaGilaiaaigda caaIUaGaaGymaiaaiMcaaaa@41E6@  и (0.5,1.5,2.1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiIcacaaIWa GaaGOlaiaaiwdacaaISaGaaGymaiaai6cacaaI1aGaaGilaiaaikda caaIUaGaaGymaiaaiMcaaaa@41E8@ , Z={( x (1) , x (2) ,0.0001)| MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadQfacaaI9a GaaG4EaiaaiIcacaWG4bWaaWbaaSqabeaacaaIOaGaaGymaiaaiMca aaGccaaISaGaamiEamaaCaaaleqabaGaaGikaiaaikdacaaIPaaaaO GaaGilaiabgkHiTiaaicdacaaIUaGaaGimaiaaicdacaaIWaGaaGym aiaaiMcacaaMi8UaaGiFaaaa@4C89@   |0.5< x (1) , x (2) <1.5} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiYhacaaMi8 UaeyOeI0IaaGimaiaai6cacaaI1aGaaGipaiaadIhadaahaaWcbeqa aiaaiIcacaaIXaGaaGykaaaakiaaiYcacaWG4bWaaWbaaSqabeaaca aIOaGaaGOmaiaaiMcaaaGccaaI8aGaaGymaiaai6cacaaI1aGaaGyF aaaa@4A5E@  

0.6678 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaicdacaaIUa GaaGOnaiaaiAdacaaI3aGaaGioaaaa@3CFA@  

0.4598 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaicdacaaIUa GaaGinaiaaiwdacaaI5aGaaGioaaaa@3CF9@  

0.5096 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaicdacaaIUa GaaGynaiaaicdacaaI5aGaaGOnaaaa@3CF3@  

2

Y MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadMfaaaa@3963@  – отрезок с концами (0.5,0.5,1.1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiIcacaaIWa GaaGOlaiaaiwdacaaISaGaaGimaiaai6cacaaI1aGaaGilaiaaigda caaIUaGaaGymaiaaiMcaaaa@41E6@  и (0.5,1.5,2.1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiIcacaaIWa GaaGOlaiaaiwdacaaISaGaaGymaiaai6cacaaI1aGaaGilaiaaikda caaIUaGaaGymaiaaiMcaaaa@41E8@ , Z={( x (1) , x (2) ,0.0001)| MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadQfacaaI9a GaaG4EaiaaiIcacaWG4bWaaWbaaSqabeaacaaIOaGaaGymaiaaiMca aaGccaaISaGaamiEamaaCaaaleqabaGaaGikaiaaikdacaaIPaaaaO GaaGilaiabgkHiTiaaicdacaaIUaGaaGimaiaaicdacaaIWaGaaGym aiaaiMcacaaMi8UaaGiFaaaa@4C89@   |0.5< x (1) <2,0< x (2) <1} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiYhacaaMi8 UaeyOeI0IaaGimaiaai6cacaaI1aGaaGipaiaadIhadaahaaWcbeqa aiaaiIcacaaIXaGaaGykaaaakiaaiYdacaaIYaGaaGilaiaaicdaca aI8aGaamiEamaaCaaaleqabaGaaGikaiaaikdacaaIPaaaaOGaaGip aiaaigdacaaI9baaaa@4BE9@  

0.6877 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaicdacaaIUa GaaGOnaiaaiIdacaaI3aGaaG4naaaa@3CFB@  

0.4917 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaicdacaaIUa GaaGinaiaaiMdacaaIXaGaaG4naaaa@3CF4@  

0.5472 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaicdacaaIUa GaaGynaiaaisdacaaI3aGaaGOmaaaa@3CF1@  

3

Y MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadMfaaaa@3963@  – отрезок с концами (0.5,0.5,1.1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiIcacaaIWa GaaGOlaiaaiwdacaaISaGaaGimaiaai6cacaaI1aGaaGilaiaaigda caaIUaGaaGymaiaaiMcaaaa@41E6@  и (0.5,0.5,2.1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiIcacaaIWa GaaGOlaiaaiwdacaaISaGaaGimaiaai6cacaaI1aGaaGilaiaaikda caaIUaGaaGymaiaaiMcaaaa@41E7@ , Z={( x (1) , x (2) ,0.0001)| MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadQfacaaI9a GaaG4EaiaaiIcacaWG4bWaaWbaaSqabeaacaaIOaGaaGymaiaaiMca aaGccaaISaGaamiEamaaCaaaleqabaGaaGikaiaaikdacaaIPaaaaO GaaGilaiabgkHiTiaaicdacaaIUaGaaGimaiaaicdacaaIWaGaaGym aiaaiMcacaaMi8UaaGiFaaaa@4C89@   |0.5< x (1) <2,0< x (2) <1} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiYhacaaMi8 UaeyOeI0IaaGimaiaai6cacaaI1aGaaGipaiaadIhadaahaaWcbeqa aiaaiIcacaaIXaGaaGykaaaakiaaiYdacaaIYaGaaGilaiaaicdaca aI8aGaamiEamaaCaaaleqabaGaaGikaiaaikdacaaIPaaaaOGaaGip aiaaigdacaaI9baaaa@4BE9@  

0.6826 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaicdacaaIUa GaaGOnaiaaiIdacaaIYaGaaGOnaaaa@3CF5@  

0.5261 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaicdacaaIUa GaaGynaiaaikdacaaI2aGaaGymaaaa@3CED@  

0.5530 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaicdacaaIUa GaaGynaiaaiwdacaaIZaGaaGimaaaa@3CEC@  

4

Y MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadMfaaaa@3963@  – отрезок с концами (0.1,0.1,1.1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiIcacaaIWa GaaGOlaiaaigdacaaISaGaaGimaiaai6cacaaIXaGaaGilaiaaigda caaIUaGaaGymaiaaiMcaaaa@41DE@  и (0.1,0.1,2.1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiIcacaaIWa GaaGOlaiaaigdacaaISaGaaGimaiaai6cacaaIXaGaaGilaiaaikda caaIUaGaaGymaiaaiMcaaaa@41DF@ , Z={( x (1) , x (2) ,0.0001)| MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadQfacaaI9a GaaG4EaiaaiIcacaWG4bWaaWbaaSqabeaacaaIOaGaaGymaiaaiMca aaGccaaISaGaamiEamaaCaaaleqabaGaaGikaiaaikdacaaIPaaaaO GaaGilaiabgkHiTiaaicdacaaIUaGaaGimaiaaicdacaaIWaGaaGym aiaaiMcacaaMi8UaaGiFaaaa@4C89@   |0.5< x (1) <2,0< x (2) <1} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiYhacaaMi8 UaeyOeI0IaaGimaiaai6cacaaI1aGaaGipaiaadIhadaahaaWcbeqa aiaaiIcacaaIXaGaaGykaaaakiaaiYdacaaIYaGaaGilaiaaicdaca aI8aGaamiEamaaCaaaleqabaGaaGikaiaaikdacaaIPaaaaOGaaGip aiaaigdacaaI9baaaa@4BE9@  

0.7756 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaicdacaaIUa GaaG4naiaaiEdacaaI1aGaaGOnaaaa@3CF8@  

0.6652 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaicdacaaIUa GaaGOnaiaaiAdacaaI1aGaaGOmaaaa@3CF2@  

0.6247 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaicdacaaIUa GaaGOnaiaaikdacaaI0aGaaG4naaaa@3CF2@  

5

Y MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadMfaaaa@3963@  – отрезок с концами (0.5,0.5,1.1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiIcacaaIWa GaaGOlaiaaiwdacaaISaGaaGimaiaai6cacaaI1aGaaGilaiaaigda caaIUaGaaGymaiaaiMcaaaa@41E6@  и (0.5,0.5,2.1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiIcacaaIWa GaaGOlaiaaiwdacaaISaGaaGimaiaai6cacaaI1aGaaGilaiaaikda caaIUaGaaGymaiaaiMcaaaa@41E7@ , Z={( x (1) , x (2) ,0.0001)| MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadQfacaaI9a GaaG4EaiaaiIcacaWG4bWaaWbaaSqabeaacaaIOaGaaGymaiaaiMca aaGccaaISaGaamiEamaaCaaaleqabaGaaGikaiaaikdacaaIPaaaaO GaaGilaiabgkHiTiaaicdacaaIUaGaaGimaiaaicdacaaIWaGaaGym aiaaiMcacaaMi8UaaGiFaaaa@4C89@   |0.5< x (1) <2,0< x (2) <1} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiYhacaaMi8 UaeyOeI0IaaGimaiaai6cacaaI1aGaaGipaiaadIhadaahaaWcbeqa aiaaiIcacaaIXaGaaGykaaaakiaaiYdacaaIYaGaaGilaiaaicdaca aI8aGaamiEamaaCaaaleqabaGaaGikaiaaikdacaaIPaaaaOGaaGip aiaaigdacaaI9baaaa@4BE9@  

0.7840 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaicdacaaIUa GaaG4naiaaiIdacaaI0aGaaGimaaaa@3CF2@  

0.6107 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaicdacaaIUa GaaGOnaiaaigdacaaIWaGaaG4naaaa@3CED@  

0.6420 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaicdacaaIUa GaaGOnaiaaisdacaaIYaGaaGimaaaa@3CEB@  

 

Таблица 2. Отрезок Y и прямоугольник Z параллельны. Указаны относительные погрешности аппроксимации функций ξ 1 * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabe67a4naaDa aaleaacaaIXaaabaGaaGOkaaaaaaa@3BE4@ , ξ 2 * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabe67a4naaDa aaleaacaaIYaaabaGaaGOkaaaaaaa@3BE5@ , ξ 3 * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabe67a4naaDa aaleaacaaIZaaabaGaaGOkaaaaaaa@3BE6@

N MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaad6eaaaa@3958@

Множества Y MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadMfaaaa@3963@  и Z MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadQfaaaa@3964@  

ξ 1 * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabe67a4naaDa aaleaacaaIXaaabaGaaGOkaaaaaaa@3BE4@  

ξ 2 * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabe67a4naaDa aaleaacaaIYaaabaGaaGOkaaaaaaa@3BE5@  

ξ 3 * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabe67a4naaDa aaleaacaaIZaaabaGaaGOkaaaaaaa@3BE6@  

6

Y MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadMfaaaa@3963@  – отрезок с концами (0,0,1.001) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiIcacaaIWa GaaGilaiaaicdacaaISaGaaGymaiaai6cacaaIWaGaaGimaiaaigda caaIPaaaaa@406C@  и (1,1,1.001) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiIcacaaIXa GaaGilaiaaigdacaaISaGaaGymaiaai6cacaaIWaGaaGimaiaaigda caaIPaaaaa@406E@ , Z={( x (1) , x (2) ,0.0001)| MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadQfacaaI9a GaaG4EaiaaiIcacaWG4bWaaWbaaSqabeaacaaIOaGaaGymaiaaiMca aaGccaaISaGaamiEamaaCaaaleqabaGaaGikaiaaikdacaaIPaaaaO GaaGilaiabgkHiTiaaicdacaaIUaGaaGimaiaaicdacaaIWaGaaGym aiaaiMcacaaMi8UaaGiFaaaa@4C89@   |0.5< x (1) , x (2) <1.5} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiYhacaaMi8 UaeyOeI0IaaGimaiaai6cacaaI1aGaaGipaiaadIhadaahaaWcbeqa aiaaiIcacaaIXaGaaGykaaaakiaaiYcacaWG4bWaaWbaaSqabeaaca aIOaGaaGOmaiaaiMcaaaGccaaI8aGaaGymaiaai6cacaaI1aGaaGyF aaaa@4A5E@  

0.5576 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaicdacaaIUa GaaGynaiaaiwdacaaI3aGaaGOnaaaa@3CF6@  

0.3417 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaicdacaaIUa GaaG4maiaaisdacaaIXaGaaG4naaaa@3CEE@  

0.3745 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaicdacaaIUa GaaG4maiaaiEdacaaI0aGaaGynaaaa@3CF2@  

7

Y MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadMfaaaa@3963@  – отрезок с концами (1,1,1.001) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiIcacqGHsi slcaaIXaGaaGilaiabgkHiTiaaigdacaaISaGaaGymaiaai6cacaaI WaGaaGimaiaaigdacaaIPaaaaa@4248@  и (2,2,1.001) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiIcacaaIYa GaaGilaiaaikdacaaISaGaaGymaiaai6cacaaIWaGaaGimaiaaigda caaIPaaaaa@4070@ , Z={( x (1) , x (2) ,0.0001)| MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadQfacaaI9a GaaG4EaiaaiIcacaWG4bWaaWbaaSqabeaacaaIOaGaaGymaiaaiMca aaGccaaISaGaamiEamaaCaaaleqabaGaaGikaiaaikdacaaIPaaaaO GaaGilaiabgkHiTiaaicdacaaIUaGaaGimaiaaicdacaaIWaGaaGym aiaaiMcacaaMi8UaaGiFaaaa@4C89@   |1< x (1) , x (2) <2} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiYhacaaMi8 UaeyOeI0IaaGymaiaaiYdacaWG4bWaaWbaaSqabeaacaaIOaGaaGym aiaaiMcaaaGccaaISaGaamiEamaaCaaaleqabaGaaGikaiaaikdaca aIPaaaaOGaaGipaiaaikdacaaI9baaaa@4772@  

0.5264 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaicdacaaIUa GaaGynaiaaikdacaaI2aGaaGinaaaa@3CF0@  

0.3217 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaicdacaaIUa GaaG4maiaaikdacaaIXaGaaG4naaaa@3CEC@  

0.3300 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaicdacaaIUa GaaG4maiaaiodacaaIWaGaaGimaaaa@3CE5@  

8

Y MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadMfaaaa@3963@  – отрезок с концами (0.5,0,1.001) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiIcacaaIWa GaaGOlaiaaiwdacaaISaGaaGimaiaaiYcacaaIXaGaaGOlaiaaicda caaIWaGaaGymaiaaiMcaaaa@41E3@  и (0.5,1,1.001) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiIcacaaIWa GaaGOlaiaaiwdacaaISaGaaGymaiaaiYcacaaIXaGaaGOlaiaaicda caaIWaGaaGymaiaaiMcaaaa@41E4@   Z={( x (1) , x (2) ,0.0001)| MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadQfacaaI9a GaaG4EaiaaiIcacaWG4bWaaWbaaSqabeaacaaIOaGaaGymaiaaiMca aaGccaaISaGaamiEamaaCaaaleqabaGaaGikaiaaikdacaaIPaaaaO GaaGilaiabgkHiTiaaicdacaaIUaGaaGimaiaaicdacaaIWaGaaGym aiaaiMcacaaMi8UaaGiFaaaa@4C89@   |0.5< x (1) , x (2) <1.5} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiYhacaaMi8 UaeyOeI0IaaGimaiaai6cacaaI1aGaaGipaiaadIhadaahaaWcbeqa aiaaiIcacaaIXaGaaGykaaaakiaaiYcacaWG4bWaaWbaaSqabeaaca aIOaGaaGOmaiaaiMcaaaGccaaI8aGaaGymaiaai6cacaaI1aGaaGyF aaaa@4A5E@  

0.6080 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaicdacaaIUa GaaGOnaiaaicdacaaI4aGaaGimaaaa@3CED@  

0.3362 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaicdacaaIUa GaaG4maiaaiodacaaI2aGaaGOmaaaa@3CED@  

0.4082 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaicdacaaIUa GaaGinaiaaicdacaaI4aGaaGOmaaaa@3CED@  

9

Y MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadMfaaaa@3963@  – отрезок с концами (0.5,0.5,1.001),(0.5,1.5,1.001) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiIcacaaIWa GaaGOlaiaaiwdacaaISaGaeyOeI0IaaGimaiaai6cacaaI1aGaaGil aiaaigdacaaIUaGaaGimaiaaicdacaaIXaGaaGykaiaaiYcacaaIOa GaaGimaiaai6cacaaI1aGaaGilaiaaigdacaaIUaGaaGynaiaaiYca caaIXaGaaGOlaiaaicdacaaIWaGaaGymaiaaiMcaaaa@4FD3@   Z={( x (1) , x (2) ,0.0001)| MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadQfacaaI9a GaaG4EaiaaiIcacaWG4bWaaWbaaSqabeaacaaIOaGaaGymaiaaiMca aaGccaaISaGaamiEamaaCaaaleqabaGaaGikaiaaikdacaaIPaaaaO GaaGilaiabgkHiTiaaicdacaaIUaGaaGimaiaaicdacaaIWaGaaGym aiaaiMcacaaMi8UaaGiFaaaa@4C89@   |0.5< x (1) , x (2) <1.5} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiYhacaaMi8 UaeyOeI0IaaGimaiaai6cacaaI1aGaaGipaiaadIhadaahaaWcbeqa aiaaiIcacaaIXaGaaGykaaaakiaaiYcacaWG4bWaaWbaaSqabeaaca aIOaGaaGOmaiaaiMcaaaGccaaI8aGaaGymaiaai6cacaaI1aGaaGyF aaaa@4A5E@  

0.5173 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaicdacaaIUa GaaGynaiaaigdacaaI3aGaaG4maaaa@3CEF@  

0.2848 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaicdacaaIUa GaaGOmaiaaiIdacaaI0aGaaGioaaaa@3CF5@  

0.3399 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaicdacaaIUa GaaG4maiaaiodacaaI5aGaaGyoaaaa@3CF7@  

10

Y MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadMfaaaa@3963@  – отрезок с концами (0.5,0.5,0.001), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiIcacaaIWa GaaGOlaiaaiwdacaaISaGaeyOeI0IaaGimaiaai6cacaaI1aGaaGil aiabgkHiTiaaicdacaaIUaGaaGimaiaaicdacaaIXaGaaGykaiaaiY caaaa@45E9@   (0.5,1.5,0.001) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiIcacaaIWa GaaGOlaiaaiwdacaaISaGaaGymaiaai6cacaaI1aGaaGilaiabgkHi TiaaicdacaaIUaGaaGimaiaaicdacaaIXaGaaGykaaaa@4447@ , Z={( x (1) , x (2) ,0.0001)| MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadQfacaaI9a GaaG4EaiaaiIcacaWG4bWaaWbaaSqabeaacaaIOaGaaGymaiaaiMca aaGccaaISaGaamiEamaaCaaaleqabaGaaGikaiaaikdacaaIPaaaaO GaaGilaiabgkHiTiaaicdacaaIUaGaaGimaiaaicdacaaIWaGaaGym aiaaiMcacaaMi8UaaGiFaaaa@4C89@   |0.5< x (1) , x (2) <1.5} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiYhacaaMi8 UaeyOeI0IaaGimaiaai6cacaaI1aGaaGipaiaadIhadaahaaWcbeqa aiaaiIcacaaIXaGaaGykaaaakiaaiYcacaWG4bWaaWbaaSqabeaaca aIOaGaaGOmaiaaiMcaaaGccaaI8aGaaGymaiaai6cacaaI1aGaaGyF aaaa@4A5E@  

0.5707 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaicdacaaIUa GaaGynaiaaiEdacaaIWaGaaG4naaaa@3CF2@  

0.4631 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaicdacaaIUa GaaGinaiaaiAdacaaIZaGaaGymaaaa@3CED@  

0.4845 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaicdacaaIUa GaaGinaiaaiIdacaaI0aGaaGynaaaa@3CF4@  

11

Y MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadMfaaaa@3963@  – отрезок с концами (0.5,0.5,0.4),(0.5,1.5,0.4) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiIcacaaIWa GaaGOlaiaaiwdacaaISaGaeyOeI0IaaGimaiaai6cacaaI1aGaaGil aiabgkHiTiaaicdacaaIUaGaaGinaiaaiMcacaaISaGaaGikaiaaic dacaaIUaGaaGynaiaaiYcacaaIXaGaaGOlaiaaiwdacaaISaGaeyOe I0IaaGimaiaai6cacaaI0aGaaGykaaaa@4EC9@   Z={( x (1) , x (2) ,0.5)| MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadQfacaaI9a GaaG4EaiaaiIcacaWG4bWaaWbaaSqabeaacaaIOaGaaGymaiaaiMca aaGccaaISaGaamiEamaaCaaaleqabaGaaGikaiaaikdacaaIPaaaaO GaaGilaiabgkHiTiaaicdacaaIUaGaaGynaiaaiMcacaaMi8UaaGiF aaaa@4A5F@   |0.5< x (1) , x (2) <1.5} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiYhacaaMi8 UaeyOeI0IaaGimaiaai6cacaaI1aGaaGipaiaadIhadaahaaWcbeqa aiaaiIcacaaIXaGaaGykaaaakiaaiYcacaWG4bWaaWbaaSqabeaaca aIOaGaaGOmaiaaiMcaaaGccaaI8aGaaGymaiaai6cacaaI1aGaaGyF aaaa@4A5E@  

0.7966 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaicdacaaIUa GaaG4naiaaiMdacaaI2aGaaGOnaaaa@3CFB@  

0.6726 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaicdacaaIUa GaaGOnaiaaiEdacaaIYaGaaGOnaaaa@3CF4@  

0.7488 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaicdacaaIUa GaaG4naiaaisdacaaI4aGaaGioaaaa@3CFA@  

 

Фиг. 1. Пример 7 из табл. 2. Графики функции ξ 3 * (,, x (3) ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabe67a4naaDa aaleaacaaIZaaabaGaaGOkaaaakiaaiIcacqGHflY1caaISaGaeyyX ICTaaGilaiaadIhadaahaaWcbeqaaiaaiIcacaaIZaGaaGykaaaaki aaiMcaaaa@46AB@  (справа) и соответствующего приближенного решения (слева) при x (3) =0.2,0.45,0.7,0.95 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadIhadaahaa WcbeqaaiaaiIcacaaIZaGaaGykaaaakiaai2dacaaIWaGaaGOlaiaa ikdacaaISaGaaGjcVlaaysW7caaIWaGaaGOlaiaaisdacaaI1aGaaG ilaiaayIW7caaMe8UaaGimaiaai6cacaaI3aGaaGilaiaayIW7caaM e8UaaGimaiaai6cacaaI5aGaaGynaaaa@5262@ .

 

Фиг. 2. Пример 9 из табл. 2. Графики функции ξ 1 * (,, x (3) ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabe67a4naaDa aaleaacaaIXaaabaGaaGOkaaaakiaaiIcacqGHflY1caaISaGaeyyX ICTaaGilaiaadIhadaahaaWcbeqaaiaaiIcacaaIZaGaaGykaaaaki aaiMcaaaa@46A9@  (справа) и соответствующего приближенного решения (слева) при x (3) =0.2,0.45,0.7,0.95 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadIhadaahaa WcbeqaaiaaiIcacaaIZaGaaGykaaaakiaai2dacaaIWaGaaGOlaiaa ikdacaaISaGaaGjcVlaaysW7caaMe8UaaGimaiaai6cacaaI0aGaaG ynaiaaiYcacaaMe8UaaGjbVlaayIW7caaIWaGaaGOlaiaaiEdacaaI SaGaaGjcVlaaysW7caaMe8UaaGimaiaai6cacaaI5aGaaGynaaaa@5709@ .

 

Фиг. 3. Пример 9 из табл. 2. Графики функции ξ 2 * (,, x (3) ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabe67a4naaDa aaleaacaaIYaaabaGaaGOkaaaakiaaiIcacqGHflY1caaISaGaeyyX ICTaaGilaiaadIhadaahaaWcbeqaaiaaiIcacaaIZaGaaGykaaaaki aaiMcaaaa@46AA@  (справа) и соответствующего приближенного решения (слева) при x (3) =0.2,0.45,0.7,0.95 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadIhadaahaa WcbeqaaiaaiIcacaaIZaGaaGykaaaakiaai2dacaaIWaGaaGOlaiaa ikdacaaISaGaaGjbVlaaysW7caaMi8UaaGimaiaai6cacaaI0aGaaG ynaiaaiYcacaaMi8UaaGjbVlaaysW7caaIWaGaaGOlaiaaiEdacaaI SaGaaGjcVlaaysW7caaMe8UaaGimaiaai6cacaaI5aGaaGynaaaa@5709@ .

 

Фиг. 4. Пример 11 из табл. 2. Графики функции ξ 1 * (,, x (3) ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabe67a4naaDa aaleaacaaIXaaabaGaaGOkaaaakiaaiIcacqGHflY1caaISaGaeyyX ICTaaGilaiaadIhadaahaaWcbeqaaiaaiIcacaaIZaGaaGykaaaaki aaiMcaaaa@46A9@  (справа) и соответствующего приближенного решения (слева) при x (3) =0.2,0.45,0.7,0.95 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadIhadaahaa WcbeqaaiaaiIcacaaIZaGaaGykaaaakiaai2dacaaIWaGaaGOlaiaa ikdacaaISaGaaGjcVlaaysW7caaMe8UaaGimaiaai6cacaaI0aGaaG ynaiaaiYcacaaMe8UaaGjbVlaayIW7caaIWaGaaGOlaiaaiEdacaaI SaGaaGjcVlaaysW7caaMe8UaaGimaiaai6cacaaI5aGaaGynaaaa@5709@ .

 

Результаты проведенных экспериментов показывают, что точность аппроксимации неоднородности обычно повышается при увеличении размеров отрезка Y и прямоугольника Z (ср. эксперименты 1 и 2, 6 и 7, 8 и 9), а также при их приближении к исследуемой неоднородности (ср. эксперименты 3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3794@ 5, 9 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3794@ 11). Можно рекомендовать располагать отрезок Y и прямоугольник Z по разные стороны от куба D, параллельно его граням и как можно ближе к ним. В экспериментах 6 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3794@ 9, где множества Y и Z расположены именно так, погрешности аппроксимации минимальны (см. фиг. 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3794@ 3). В то же время фиг. 4 демонстрирует, что при удалении множеств Y и Z от зондируемой области D погрешность аппроксимации увеличивается. Проведенные эксперименты показывают, что обычно место локализации неоднородностей восстанавливается точнее, чем их амплитуды. Для дальнейшего увеличения точности вычислений необходимо увеличивать количество шагов сетки N, что, в свою очередь, требует применения суперкомпьютерных технологий (см. [17]). Альтернативой им могут выступать специальные быстрые алгоритмы, например, предлагаемые в [18], [19].

 

1 Работа выполнена при финансовой поддержке РНФ (проект № 22-71-10070).

×

作者简介

M. Kokurin

Mari State University

编辑信件的主要联系方式.
Email: kokurin@nextmail.ru
俄罗斯联邦, Lenin Sqr., 1, Yoshkar-Ola, Republic of Mari El, 424001

V. Klyuchev

Mari State University

Email: kokurin@nextmail.ru
俄罗斯联邦, Lenin Sqr., 1, Yoshkar-Ola, Republic of Mari El, 424001

A. Gavrilova

Mari State University

Email: kokurin@nextmail.ru
俄罗斯联邦, Lenin Sqr., 1, Yoshkar-Ola, Republic of Mari El, 424001

参考

  1. Лаврентьев М.М. Об одной обратной задаче для волнового уравнения // Докл. АН СССР. 1964. Т. 157. 3. С. 520–521.
  2. Лаврентьев М.М. Об одном классе обратных задач для дифференциальных уравнений // Докл. АН СССР. 1965. Т. 160. 1. С. 32–35.
  3. Бакушинский А.Б., Козлов А.И., Кокурин М.Ю. Об одной обратной задаче для трехмерного волнового уравнения // Ж. вычисл. матем. и матем. физ. 2003. Т. 47. 3. С. 1201–1209.
  4. Вайнберг М.М. Асимптотические методы в уравнениях математической физики. М.: Изд-во МГУ. 1982.
  5. Романов В.Г. О гладкости фундаментального решения для гиперболического уравнения второго порядка // Сиб. матем. журн. 2009. Т. 50. 4. С. 883–889.
  6. Козлов А.И., Кокурин М.Ю. Об интегральных уравнениях типа М.М.Лаврентьева в коэффициентных обратных задачах для волновых уравнений // Ж. вычисл. матем. и матем. физ. 2021. Т. 61. 9. С. 1492–1507.
  7. Klibanov M., Li J., Zhang W. Linear Lavrent’ev integral equation for the numerical solution of a nonlinear coefficient inverse problem // SIAM J. Appl. Math. 2021. V. 81. 5. P. 1954–1978.
  8. Кокурин М.Ю. Полнота асимметричных произведений гармонических функций и единственность решения уравнения М.М. Лаврентьева в обратных задачах волнового зондирования // Изв. РАН. Сер. матем. 2022. Т. 86. 6. С. 101–122.
  9. Лаврентьев М.М., Романов В.Г., Шишатский С.П. Некорректные задачи математической физики и анализа. М.: Наука, 1980.
  10. Рамм А.Г. Многомерные обратные задачи рассеяния. М.: Мир, 1994.
  11. Бухгейм А.Л., Дятлов Г.В., Кардаков В.Б., Танцерев Е.В. Единственность в одной обратной задаче для системы уравнений упругости // Сиб. матем. журн. 2004. Т. 45. 4. С. 747–757.
  12. Кокурин М.Ю., Паймеров С.К. Об обратной коэффициентной задаче для волнового уравнения в ограниченной области // Ж. вычисл. матем. и матем. физ. 2008. Т. 48. 1. С. 117–128.
  13. Kokurin M.Yu. On a multidimensional integral equation with data supported by low-dimensional analytic manifolds // J. of Inverse and Ill-Posed Probl. 2013. V. 21. 1. P. 125–140.
  14. Кокурин М.Ю. О полноте произведений гармонических функций и единственности решения обратной задачи акустического зондирования // Матем. заметки. 2008. Т. 21. 1. С. 125–140.
  15. Кокурин М.Ю. О полноте произведений решений уравнения Гельмгольца // Изв. вузов. Математика. 2020. 6. С. 30–35.
  16. Кокурин М.Ю. Полнота асимметричных произведений решений эллиптического уравнения второго порядка и единственность решения обратной задачи для волнового уравнения // Дифференц. ур-ния. 2021. Т. 57. 2. С. 255–264.
  17. Кокурин М.Ю., Ключев В.В. Условия единственности и численная аппроксимация решения интегрального уравнения М.М. Лаврентьева // Сиб. журн. вычисл. матем. 2022. Т. 25. 4. С. 441–458.
  18. Бакушинский А.Б., Леонов А.С. К численному решению обратной многочастотной задачи скалярной акустики // Ж. вычисл. матем. и матем. физ. 2020. Т. 60. 6. С. 1013–1026.
  19. Bakushinsky A.B., Leonov A.S. Multifrequency inverse problem of scalar acoustics: remarks on nonuniqueness and solution algorithm // J. of Math. Sci. 2023. V. 274. 4. P. 460–474.
  20. Кудрявцев Л.Д. Курс математического анализа (в 3-х томах). Том 2. М.: Дрофа, 20014.
  21. Диткин В.А., Прудников А.П. Интегральные преобразования и операционное исчисление. М.: ГИФМЛ, 1961.
  22. Лаврентьев М.А., Шабат Б.В. Методы теории функций комплексного переменного. М.: Наука, 1965.
  23. Киприянов И.А. Сингулярные эллиптические краевые задачи. М.: Физматлит, 1997.
  24. Стейн И., Вейс Г. Введение в гармонический анализ на евклидовых пространствах. М.: Мир, 1974.
  25. Ахиезер Н.И. Лекции по теории аппроксимации. М.: Наука, 1965.
  26. Богачёв В.И., Смолянов О.Г. Действительный и функциональный анализ: университетский курс. М. – Ижевск: НИЦ “Регулярная и хаотическая динамика”, 2011.
  27. Маргулис А.С. К теории потенциала в классах L p (Ω) // Изв. вузов. Математика. 1982. Т. 236. 1. С. 33–41.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Example 7 from Table 2. Graphs of the function (right) and the corresponding approximate solution (left) for .

下载 (461KB)
3. Fig. 2. Example 9 from Table 2. Graphs of the function (right) and the corresponding approximate solution (left) for .

下载 (465KB)
4. Fig. 3. Example 9 from Table 2. Graphs of the function (on the right) and the corresponding approximate solution (on the left) for .

下载 (477KB)
5. Fig. 4. Example 11 from Table 2. Graphs of the function (right) and the corresponding approximate solution (left) for .

下载 (462KB)

版权所有 © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».