A Modified Secant Method for Entropic Lattice Boltzmann Equations

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Stability of lattice Boltzmann equations is governed by a parameter that is responsible for the relaxation time of the nonequilibrium system which, in turn, affects the viscosity of the flow under examination. In the entropic approach, the relaxation time is evaluated from the entropy balance equation in such a way that the entropy does not decrease at each time and spatial point. In this paper, a technique for solving the entropy balance equation using a modified secant method is proposed. It is shown that this approach provides high accuracy. As an application of the proposed method, numerical solutions of the two-dimensional double shear problem are considered. The simulation results are compared with the results obtained by other entropic methods.

About the authors

O. V. Ilyin

Federal Research Center “Computer Science and Control,” Russian Academy of Sciences,

Author for correspondence.
Email: oilyin@gmail.com
119333, Moscow, Russia

References

  1. Krüger T., Kusumaatmaja H., Kuzmin A., Shardt O., Silva G., Viggen E. The Lattice Boltzmann Method. Principles and Practice. Springer, 2017.
  2. Karlin I., Succi S., Chikatamarla S. Comment on “Numerics of the lattice Boltzmann method: Effects of collision models on the lattice Boltzmann simulations” // Phys. Rev. E. 2011. V. 84. 068701.
  3. Karlin I., Bösch F., Chikatamarla S., Succi S. Entropy-Assisted Computing of Low-Dissipative Systems // Entropy. 2015. V. 17. P. 8099.
  4. Godunov S., Sultangazin U. On discrete models of the kinetic Boltzmann equation // Russian Math. Surveys. 1971. V. 26. P. 1.
  5. Gatignol R. The hydrodynamical description for a discrete velocity model of gas // Complex Systems. 1987. V. 1. P. 709.
  6. Ilyin O. Discrete Velocity Boltzmann Model for Quasi-Incompressible Hydrodynamics // Mathematics. 2021. V. 9. P. 993.
  7. Yong W.-A., Luo L.-S. Nonexistence of H theorems for the athermal lattice Boltzmann models with polynomial equilibria // Phys. Rev. E. 2003. 051105.
  8. Yong W.-A., Luo L.-S. Nonexistence of H Theorem for some Lattice Boltzmann models // J. Stat. Phys. 2005. V. 121. P. 91.
  9. Karlin I., Succi S. Equilibria for discrete kinetic equations // Phys. Rev. E. 1998. V. 58. R4053.
  10. Karlin I., Gorban A., Succi S., Boffi V. Maximum Entropy Principle for Lattice Kinetic Equations // Phys. Rev. Lett. 1998. V. 81. P. 6.
  11. Karlin I., Ferrante A., Öttinger H. Perfect entropy functions of the Lattice Boltzmann method // Europhys. Lett. 1999. V. 47. P. 182.
  12. Ansumali S., Karlin I., Öttinger H. Minimal entropic kinetic models for hydrodynamics // Europhys. Lett. 2003. V. 63. P. 798.
  13. Ansumali S., Karlin I. Stabilization of the lattice Boltzmann method by the H theorem: A numerical test // Phys. Rev E. 2000. V. 62. 7999.
  14. Ansumali S., Karlin I. Entropy Function Approach to the Lattice Boltzmann Method // J. Stat. Phys. 2002. V. 107. P. 291.
  15. Tosi F., Ubertini S., Succi S., Karlin I. Optimization Strategies for the Entropic Lattice Boltzmann Method // J. Sci. Comput. 2007. V. 30. P. 369.
  16. Chikatamarla S., Ansumali S., Karlin I. Entropic Lattice Boltzmann Models for Hydrodynamics in Three Dimensions // Phys. Rev. Lett. 2006. V. 97. 010201.
  17. Atif M., Kolluru P., Thantanapally C., Ansumali S. Essentially Entropic Lattice Boltzmann Model // Phys. Rev. Lett. 2017. V. 119. 240602.
  18. Zhao W., Yong W.-A. Relaxation-rate formula for the entropic lattice Boltzmann method // Chinese Phys. B. 2019. V. 28. 114701.
  19. Jonnalagadda A., Sharma A., Agrawal A. Single Relaxation Time Entropic Lattice Boltzmann Methods: A Developer’s Perspective for Stable and Accurate Simulations // Comput. Fluids. 2021. V. 2015. 104792.
  20. Karlin I., Ansumali S., Frouzakis C., Chikatamarla, S. Elements of the Lattice Boltzmann Method I: Linear Advection Equation // Commun. Comput. Phys. 2006. V. 1. P. 616.
  21. F. Topsøe. Some bounds for the logarithmic function // https: // rgmia.org/papers/v7n2/pade.pdf. 2007. University of Copenhagen.
  22. Sterling J., Chen S. Stability Analysis of Lattice Boltzmann Methods // J. Comp. Phys. 1996. V. 123. P. 196.
  23. Siebert D., Hegele Jr. L., Philippi P. Lattice Boltzmann equation linear stability analysis: Thermal and athermal models // Phys. Rev. E. 2008. V. 77. P. 026707.
  24. Ricot D., Marié S., Sagaut P. Comparison between lattice Boltzmann method and Navier–Stokes high order schemes for computational aeroacoustics // J. Comp. Phys. 2009. V. 228. P. 1056.
  25. Wissocq G., Sagaut P., Boussuge J.-F. An extended spectral analysis of the lattice Boltzmann method: modal interactions and stability issues // J. Comp. Phys. 2019. V. 380. P. 311.
  26. Masset P.-A., Wissocq G. Linear hydrodynamics and stability of the discrete velocity Boltzmann equations // J. Fluid Mech. 2020. V. 897. A.29.
  27. Coreixas C., Wissocq G., Chopard B., Latt, J. Impact of collision models on the physical properties and the stability of lattice Boltzmann methods // Phil. Trans. R. Soc. A. 2020. V. 378. P. 20190397.
  28. Wissocq G., Coreixas C., Boussuge J.-F. Linear stability and isotropy properties of athermal regularized lattice Boltzmann methods // Phys. Rev. E. 2020. V. 102. P. 053305.
  29. Ilyin O. Discrete-velocity Boltzmann model: Regularization and linear stability // Phys. Rev. E. 2022. V. 105. P. 045312.
  30. Mattila K., Hegele Jr. L., Philippi P. Investigation of an entropic stabilizer for the lattice-Boltzmann method // Phys. Rev. E. 2015. V. 91. P. 063010.
  31. Dellar P. Bulk and shear viscosities in lattice Boltzmann equations // Phys. Rev. E. 2001. V. 64. P. 031203.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (52KB)
3.

Download (389KB)
4.

Download (171KB)
5.

Download (64KB)

Copyright (c) 2023 О.В. Ильин

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».