Влияние природы и концентрации горючего агента на структуру и морфологию микросфер ZnO, полученных методом горения реакционных аэрозолей

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Ультрадисперсные сферические порошки ZnO c термоэлектрическими свойствами получены методом горения реакционных аэрозолей с добавлением 4 видов топлив: уротропина, глицина, мочевины, лимонной кислоты. С применением рентгенофазового анализа, сканирующей электронной микроскопии и низкотемпературной адсорбции азота продемонстрировано влияние основных параметров процесса (состав и концентрация топлива, температура и скорость несущего газа) на структуру и морфологию частиц ZnO. Установлено, что температуры синтеза 700°C достаточно для получения кристаллического ZnO с гомогенным фазовым составом независимо от вида и количества топлива. Показано, что исходный рН раствора прекурсора не влияет на образование фазы ZnO. При скорости потока газа-носителя выше 4 л·мин-1 детектируются побочные продукты. Определено, что избыток и вид топлива существенно влияет на морфологию синтезированных микросфер ZnO, что может быть использовано для регулирования технологических характеристик порошка и кинетики его спекания.

Об авторах

Ж. С. Ермекова

Национальный исследовательский технологический университет МИСИС

Email: acjournal.nauka.nw@yandex.ru
119049, Moscow, Russia

С. И. Росляков

Национальный исследовательский технологический университет МИСИС

Email: acjournal.nauka.nw@yandex.ru
119049, Moscow, Russia

С. С. Юрлов

Национальный исследовательский технологический университет МИСИС

Email: acjournal.nauka.nw@yandex.ru
119049, Moscow, Russia

Д. В. Биндюг

Национальный исследовательский технологический университет МИСИС

Email: acjournal.nauka.nw@yandex.ru
119049, Moscow, Russia

Е. В. Чернышова

Национальный исследовательский технологический университет МИСИС

Email: acjournal.nauka.nw@yandex.ru
119049, Moscow, Russia

С. В Савилов

Московский государственный университет им. М. В. Ломоносова;Институт нефтехимического синтеза им. А. В. Топчиева РАН (ИНХС РАН)

Автор, ответственный за переписку.
Email: acjournal.nauka.nw@yandex.ru
119991, Moscow, Russia; 119991, Moscow, Russia

Список литературы

  1. Klingshirn C. ZnO: Material, physics and applications // ChemPhysChem. 2007. V. 8. N 6. P. 782-803. https://doi.org/10.1002/cphc.200700002
  2. Ren G., Lan J., Zeng C., Liu Y., Zha B., Butt S., Nan C. W. High performance oxides-based thermoelectric materials // JOM. 2015. V. 67. P. 211-221. https://doi.org/10.1007/s11837-014-1218-2
  3. Bugalia A., Gupta V., Thakur N. Strategies to enhance the performance of thermoelectric materials: A review //j. Renew. Sustain. Energy. 2023. V. 15. ID 032704. https://doi.org/10.1063/5.0147000
  4. Prasad R., Bhame S. D. Review on texturization effects in thermoelectric oxides // Mater. Renew. Sustain. Energy. 2020. V. 9. P. 1-22. https://doi.org/10.1007/s40243-019-0163-y
  5. Kolodziejczak-Radzimska A., Jesionowski T. Zinc oxide-from synthesis to application: A review // Materials. 2014. V. 7. P. 2833-2881. https://doi.org/10.3390/ma7042833
  6. Prabhuraj T., Prabhu S., Dhandapani E., Duraisamy N., Ramesh R., Kumar K. R., Maadeswaran P. Bifunctional ZnO sphere/r-GO composites for supercapacitor and photocatalytic activity of organic dye degradation // Diamond Relat. Mater. 2021. V. 120. ID 108592. https://doi.org/10.1016/j.diamond.2021.108592
  7. Xing Y., Zhang L. X., Chong M. X., Yin Y. Y., Li C. T., Bie L. J. In-situ construction of carbon-doped ZnO hollow spheres for highly efficient dimethylamine detection // Sens. Actuators. B. 2022. V. 369. ID 132356. https://doi.org/10.2139/ssrn.4009448
  8. Lee Y., Fujimoto T., Yamanaka S. Characterization of submicro-sized Ag/ZnO particles generated using the spray pyrolysis method // Adv. Powder Technol. 2022. V. 33. ID 103525. https://doi.org/10.1016/j.apt.2022.103525.
  9. Trusov G. V., Tarasov A. B., Goodilin E. A., Rogachev A. S., Roslyakov S. I., Rouvimov S., Mukasyan A. S. Spray solution combustion synthesis of metallic hollow microspheres //j. Phys. Chem. C. 2016. V. 120. N 13. P. 7165-7171. https://doi.org/10.1021/acs.jpcc.6b00788
  10. Yermekova Z., Trusov G., Roslyakov S. I. Spray solution combustion synthesis of NiCu hollow spheres // Int. Conf. on Mechanical, System and Control Engineer. Singapore: Springer Singapore, 2021. P. 11-17. https://doi.org/10.1007/978-981-16-9632-9_2
  11. Konstantinova E. A., Minnekhanov A. A., Trusov G. V., Kytin V. G. Titania-based nanoheterostructured microspheres for prolonged visible-light-driven photocatalysis // Nanotech. 2020. V. 31. ID 32392554. https://doi.org/10.1088/1361-6528/ab91f1
  12. Varma A., Mukasyan A. S., Rogachev A. S., Manukyan K. V. Solution combustion synthesis of nanoscale materials // Chem. Rev. 2016. V. 116. N 23. P. 14493-14586. https://doi.org/10.1021/acs.chemrev.6b00279
  13. Roslyakov S., Yermekova Z., Trusov G., Khort A., Evdokimenko N., Bindiug D., Mukasyan A. One-step solution combustion synthesis of nanostructured transition metal antiperovskite nitride and alloy // Nano-Struct. Nano-Objects. 2021. V. 28. ID 100796. https://doi.org/10.1016/j.nanoso.2021.10079
  14. Trusov G. V., Tarasov A. B., Moskovskikh D. O., Rogachev A. S., Mukasyan A. S. High porous cellular materials by spray solution combustion synthesis and spark plasma sintering //j. Alloys Compd. 2019. V. 779. P. 557-565. https://doi.org/10.1016/j.jallcom.2018.11.250
  15. Nesakumar N., Rayappan J. B. B., Jeyaprakas B. G., Krishnan U. M. Influence of pH on structural morphology of ZnO nanoparticle // Asian J. Appl. Sci. 2012. V. 12. N 16. P. 1758-1761. https://doi.org/10.3923/jas.2012.1758.1761

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».