Аддитивный полимер на основе 5-дифенилметилсилил-замещенного норборнена: синтез и газотранспортные свойства

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Изучена аддитивная полимеризация нового производного норборнена, содержащего две фенильных группы при кремниевом заместителе. Найдены условия полимеризации, позволяющие синтезировать высокомолекулярные продукты (Mw более 3 · 105) с выходом 75–90%. Полученные полимеры охарактеризованы спектроскопией ядерного магнитного резонанса, рентгенофазовым анализом, динамомеханическим анализом, термогравиметрическим анализом. Исследованы газотранспортные свойства полимера на основе (5-норборнен-2-метилокси)метилдифенилсилана, полученного путем аддитивной полимеризации. Показано, что данный полимер характеризуется высокой селективностью разделения по паре газов CO2 /CH4 (18.8).

Толық мәтін

Рұқсат жабық

Авторлар туралы

Фёдор Андреянов

Институт нефтехимического синтеза им. А. В. Топчиева РАН

Хат алмасуға жауапты Автор.
Email: andreyanov@ips.ac.ru
ORCID iD: 0000-0003-2559-5277
Ресей, Москва

Артём Лунин

Институт нефтехимического синтеза им. А. В. Топчиева РАН

Email: andreyanov@ips.ac.ru
Ресей, Москва

Роман Никифоров

Институт нефтехимического синтеза им. А. В. Топчиева РАН

Email: andreyanov@ips.ac.ru
ORCID iD: 0000-0002-2548-7279

к.х.н.

Ресей, Москва

Александр Алентьев

Институт нефтехимического синтеза им. А. В. Топчиева РАН

Email: andreyanov@ips.ac.ru
ORCID iD: 0000-0001-8034-9146

д.х.н., проф.

Ресей, Москва

Максим Бермешев

Институт нефтехимического синтеза им. А. В. Топчиева РАН

Email: andreyanov@ips.ac.ru
ORCID iD: 0000-0003-3333-4384

д.х.н., доцент

Ресей, Москва

Әдебиет тізімі

  1. Han Y., Winston Ho W. S. Recent developments on polymeric membranes for CO2 capture from flue gas // J. Polym. Eng. 2020. V. 26. N 11. P. 2238–2254. https://doi.org/10.1515/polyeng-2019-0298
  2. Ding Y. Perspective on gas separation membrane materials from process economics point of view // Ind. Eng. Chem. Res. 2020. V. 59. N. 2. P. 556–568. https://doi.org/10.1021/acs.iecr.9b05975
  3. Finkelshtein E., Gringolts M., Bermeshev M., Chapala P., Rogan Y. Polynorbornenes // Membrane materials for gas and vapor separation. Wiley, Chichester, UK 2017. P. 143–221. https://doi.org/10.1002/9781119112747.ch6
  4. Bermeshev M. V., Chapala P. P. Addition polymerization of functionalized norbornenes as a powerful tool for assembling molecular moieties of new polymers with versatile properties // Prog. Polym. Sci. 2018. V. 84. P. 1–46. https://doi.org/10.1016/j.progpolymsci.2018.06.003
  5. Maroon C. R., Townsend J., Gmernicki K. R., Harrigan D. J., Sundell B. J., Lawrence J. A., Mahurin S. M., Vogiatzis K. D., Long B. K. Elimination of CO2/N2 Langmuir sorption and promotion of «N2-phobicity» within high-Tg glassy membranes // Macromolecules. 2019. V. 52. N 4. P. 1589–1600. https://doi.org/10.1021/acs.macromol.8b02497
  6. Lawrence J. A., Harrigan D. J., Maroon C. R., Sharber S. A., Long B. K., Sundell B. J. Promoting acid
  7. gas separations via strategic alkoxysilyl substitution of vinyl-added poly(norbornene)s // J. Membr. Sci. 2020. V. 616. ID 118569. https://doi.org/10.1016/j.memsci.2020.118569
  8. Gmernicki K. R., Hong E., Maroon C. R., Mahurin S. M., Sokolov A. P., Saito T., Long B. K. Accessing siloxane functionalized polynorbornenes via vinyl-addition polymerization for CO 2 separation membranes // ACS Macro Lett. 2016. V. 5. N 7. P. 879–883. https://doi.org/10.1021/acsmacrolett.6b00435
  9. Gmernicki K. R., Hong E., Maroon C. R., Mahurin S. M., Sokolov A. P., Saito T., Long B. K. Correction to accessing siloxane functionalized polynorbornenes via vinyl-addition polymerization for CO 2 separation membranes // ACS Macro Lett. 2017. V. 6. N 1. P. 41–41. https://doi.org/10.1021/acsmacrolett.6b00435
  10. Wang X., Wilson T. J., Maroon C. R., Laub J. A., Rheingold S. E., Vogiatzis K. D., Long B. K. Vinyl-addition fluoroalkoxysilyl-substituted polynorbornene membranes for CO2/CH4 separation // ACS Appl. Polym. Mater. 2022. V. 4. N 11. P. 7976–7988. https://doi.org/10.1021/acsapm.1c01833
  11. Alentiev D. A., Egorova E. S., Bermeshev M. V., Starannikova L. E., Topchiy M. A., Asachenko A. F., Gribanov P. S., Nechaev M. S., Yampolskii Y. P., Finkelshtein E. S. Janus tricyclononene polymers bearing tri(n-alkoxy)silyl side groups for membrane gas separation // J. Mater. Chem. A. 2018. V. 6. N 40. P. 19393–19408. https://doi.org/10.1039/C8TA06034G
  12. Matteucci S., Yampolskii Y., Freeman B.D., Pinnau I. Transport of gases and vapors in glassy and rubbery polymers // Materials science of membranes for gas and vapor separation. Wiley, Chichester, UK, 2006. P. 1–47. https://doi.org/10.1002/047002903X.ch1
  13. Andreyanov F. A., Alentiev D. A., Lunin A. O., Borisov I. L., Volkov A. V., Finkelshtein E. S., Ren X.-K., Bermeshev M. V. Polymers from organosilicon derivatives of 5-norbornene-2-methanol for membrane gas separation // Polymer. 2022. V. 256. ID 125169. https://doi.org/10.1016/j.polymer.2022.125169
  14. Blackwell J. M., Foster K. L., Beck V. H., Piers W. E. B(C6F5)3-catalyzed silation of alcohols: A mild, general method for synthesis of silyl ethers // J. Org. Chem. 1999. V. 64. N 13. P. 4887–4892. https://doi.org/10.1021/jo9903003
  15. Alentiev D. A., Bermeshev M. V., Starannikova L. E., Bermesheva E. V., Shantarovich V. P., Bekeshev V. G., Yampolskii Y. P., Finkelshtein E. S. Stereoselective synthesis and polymerization of exo-5-trimethylsilylnorbornene // J. Polym. Sci. A: Polym. Chem. 2018. V. 56. N 12. P. 1234–1248. https://doi.org/10.1002/pola.29003

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Scheme 1

Жүктеу (39KB)
3. Scheme 2

Жүктеу (16KB)
4. Scheme 3

Жүктеу (64KB)
5. Scheme 4

Жүктеу (67KB)
6. Scheme 5

Жүктеу (73KB)
7. Fig. 1. NMR spectra of the synthesised (5-norbornene-2-methyloxy)methyldiphenylsilane (a, c) and its additive polymerisation product (b, d) at 1H (a, b) and 13C (c, d) nuclei (CDCl3)

Жүктеу (238KB)
8. Fig. 2. Thermogravimetric analysis curves of additive polymers based on organosilicon derivatives of NBCH2OH with methyl [12] and phenyl groups in argon atmosphere (a) and in air (b). AP-NBCH2OSiMe3 - additive poly((5-norbornene-2-methyloxy)trimethylsilane), AP-NBCH2OSiPh2Me - additive poly((5-norbornene-2-methyloxy)methyldiphenylsilane)

Жүктеу (101KB)
9. Fig. 3. Diffractograms of additive poly((5-norbornene-2-methyloxy)trimethylsilane) (AP-NBCH2OSiMe3) [12] and additive poly((5-norbornene-2-methyloxy)-methyldiphenylsilane) (AP-NBCH2OSiPh2Me)

Жүктеу (59KB)
10. Fig. 1

Жүктеу (14KB)

© Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».