Разработка композиционных материалов тонкопленочных функциональных слоев для электромиграционных методов анализа

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Синтезирован ряд композиционных материалов на основе олигомерного диизоцианата с различным содержанием сегнетоэлектрического наполнителя титаната бария. Исследование структуры полученных композитов методом конфокальной лазерной сканирующей микроскопии показало, что варьирование содержания титаната бария в реакционной смеси при их синтезе в диапазоне 10–50 об% позволяет регулировать морфологию с возможностью формирования как равномерного распределения частиц наполнителя, так и различных цепочечных и островковых структур. Полученные материалы перспективны для применения в электромагнитной капиллярной хроматографии в качестве неподвижных фаз, поверхность которых способна к эффективному взаимодействию с электрическим полем и управляемому разделению компонентов в процессе электрохроматографического анализа.

Full Text

Restricted Access

About the authors

Алексей Юрьевич Шмыков

Институт аналитического приборостроения РАН

Author for correspondence.
Email: shmykov.alexey@gmail.com
ORCID iD: 0000-0003-1272-8245

к.т.н.

Russian Federation, 198095, г. Санкт-Петербург, ул. Ивана Черных, д. 31–33, лит. А

Сергей Владимирович Мякин

Институт аналитического приборостроения РАН

Email: shmykov.alexey@gmail.com
ORCID iD: 0000-0001-8364-6971

к.х.н., доцент

Russian Federation, 198095, г. Санкт-Петербург, ул. Ивана Черных, д. 31–33, лит. А

Леонид Михайлович Кузнецов

Институт аналитического приборостроения РАН

Email: shmykov.alexey@gmail.com
ORCID iD: 0000-0002-5445-6527

к.б.н.

Russian Federation, 198095, г. Санкт-Петербург, ул. Ивана Черных, д. 31–33, лит. А

Наталья Анатольевна Бубис

Институт аналитического приборостроения РАН

Email: shmykov.alexey@gmail.com
ORCID iD: 0009-0007-1156-0272
SPIN-code: 1260-8381
Russian Federation, 198095, г. Санкт-Петербург, ул. Ивана Черных, д. 31–33, лит. А

Владимир Ефимович Курочкин

Институт аналитического приборостроения РАН

Email: shmykov.alexey@gmail.com
ORCID iD: 0000-0001-8743-9507
SPIN-code: 1868-9326

д.т.н.

Russian Federation, 198095, г. Санкт-Петербург, ул. Ивана Черных, д. 31–33, лит. А

References

  1. Shmykov A. Y., Bulyanitsa A. L., Timerbaev A. R. Combination of electrophoresis, chromatography, and magnetism in a single separation technique: Part 1: A first theoretical evaluation // J. Liq. Chrom. Rel. Techn. 2018. V. 41. N 1. P. 43–48. https://doi.org/10.1080/10826076.2017.1418375
  2. Shmykov A. Y., Bulyanitsa A. L., Kurochkin V. E., Timerbaev A. R. Separation technique based on electrophoresis, chromatography and magnetism phenomena: The migration time and peak broadening // Mend. Comm. 2019. V. 29. N 5. P. 595–596. https://doi.org/10.1016/j.mencom.2019.09.040
  3. Ortega N., Kumar A., Scott J. F., Katiyar R. S. Multifunctional magnetoelectric materials for device applications // J. Phys.: Condens. Matter. 2015. V. 27. N 50. https://iopscience.iop.org/article/10.1088/0953-8984/27/50/504002
  4. Jayachandran K. P., Guedes J. M., Rodrigues H. C. Solutions for maximum coupling in multiferroic magnetoelectric composites by material design // Sci. Rep. 2018. V. 8. ID 4866. https://doi.org/10.1038/s41598-018-22964-9
  5. Sychov M. M., Zakharova N. V., Mjakin S. V. Surface functional transformations in BaTiO3–CaSnO3 ceramics in the course of milling // Ceram. Int. 2013. V. 39. N 6. P. 6821–6826. http://dx.doi.org/10.1016/j.ceramint.2013.02.013
  6. Сычев М. М., Васина Е. С., Мякин С. В., Рожкова Н. Н., Сударь Н. Т. Композиты цианэтилового эфира поливинилового спирта с BaTiO3, модифицированным шунгитовым углеродом // Конденсированные среды и межфазные границы. 2014. Т. 16. № 3. С. 354–360. ID 22120635. https://www.elibrary.ru/qtrdmw
  7. Корсаков В. Г., Алексеев С. А., Сычев М. М., Цветкова М. Н., Комаров Е. В., Ли Б., Мякин С. В., Васильева И. В. Прогнозирование диэлектрических свойств полимерных композитов на основе термодинамической модели // ЖПХ. 2007. Т. 80. № 11. C. 1908–1912 [Korsakov V. G., Alekseev S. A., Sychev M. M., Tsvetkova M. N., Komarov E. V., Lee B., Mjakin S. V., Vasilʹeva I. V. Estimation of the permittivity of polymeric composite dielectrics from the surface characteristics of the filler using a thermodynamic model // Russ. J. Appl. Chem. 2007. V. 80. P. 1931–1935. https://doi.org/10.1134/S1070427207110316].
  8. Sychov M. M., Mjakin S. V., Ponyaev A. N., Belyaev V. V. Acid-base (donor-acceptor) properties of solids and relations with functional properties // Adv. Mater. Res. 2015. V. 1117. P. 147–151. http://dx.doi.org/10.4028/www.scientific.net/AMR.1117.147
  9. Sychov M., Nakanishi Y., Vasina E., Eruzin A., Mjakin S., Khamova T., Shilova O., Mimura H. Core-shell approach to control aci-base properties of surface of dielectric and permittivity of its composite // Chem. Lett. 2015. V. 44. N 2. P. 197–199. http://dx.doi.org/10.1246/cl.140926
  10. Мякин С. В., Гарипова В. А., Сычев М. М. Влияние декорирования сегнетоэлектрического наполнителя микродобавкой фуллеренола на диэлектрические свойства полимерно-неорганических композитов // Изв. СПбГТИ (ТУ). 2019. № 50 (76). С. 68–71. https://www.elibrary.ru/item.asp?edn=rygnjr
  11. Мякин С. В., Чекуряев А. Г., Голубева А. И., Сычев М. М., Лукашова Т. В. Электрические свойства полимерных композитов на основе титаната бария, модифицированного графеном // Изв. СПбГТИ (ТУ). 2019. № 49 (75). C. 66–69. https://www.elibrary.ru/iltqbg
  12. Чекуряев А. Г., Сычев М. М., Мякин С. В. Анализ структуры композиционных систем с использованием фрактальных характеристик на примере системы BaTiO3–фуллеренол−ЦЭПС // Физика тв. тела. 2021. Т. 63. № 6. C. 740–746. http://dx.doi.org/10.21883/FTT.2021.06.50932.002 [Chekuryaev A. G., Sychev M. M., Myakin S. V. Analysis of the structure of composite systems by means of fractal characteristics using the BaTiO3–fullerenol–CEPA system as an example // Phys. Solid State. 2021. V. 63. N 6. P. 858–864. http://dx.doi.org/10.1134/S1063783421060032].
  13. Шмыков А. Ю., Красовский А. Н., Бубис Н. А., Буляница А. Л., Есикова Н. А., Курочкин В. Е., Кузнецов Л. М. Электромиграционные свойства полых капиллярных колонок с полистирольным покрытием в качестве стационарной фазы // ЖПХ. 2016. Т. 89. № 12. С. 1564–1571. https://www.elibrary.ru/giahzz [Shmykov A. Y., Krasovskii A. N., Bubis N. A., Bulyanitsa A. L., Esikova N. A., Kurochkin V. E., Kuznetsov L. M. Electromigration properties of capillary columns with polystyrene coating as a stationary phase // Russ. J. Appl. Chem. 2016. V. 12. P. 1978–1984. https://doi.org/10.1134/S1070427216120089].
  14. Myakin S. V., Bubis N. A., Kuznetsov L. M., Zhukov M. V., Shmykov A. Yu. Dielectric properties of composites based on oligomeric diisocyanate and barium titanate // Phys. Solid State. 2022. V. 64. P. 157–160. http://dx.doi.org/10.1134/S1063783422040023
  15. Красовский А. Н., Шмыков А. Ю., Осмоловская Н. А., Мякин С. В., Курочкин В. Е. ИК-спектры и структура поверхности покрытий полистирола и полистиролсульфокислоты на плавленом кварцевом стекле // Науч. прибор. 2014. Т. 24. № 2. С. 5–15. https://www.elibrary.ru/scewrb
  16. Панкова М. А., Толстых Н. А., Коротков Л. Н. Диэлектрические свойства механоактивированного нанокристаллического титаната бария // Вестн. Воронеж. ин-та МВД РФ. 2022. № 1. С. 69–74. https://www.elibrary.ru/llsfpy
  17. Красовский А. Н., Шмыков А. Ю., Филиппов В. Н., Васильева И. В., Мякин С. В., Осмоловская Н. А., Борисова С. В., Курочкин В. Е. Исследование поверхностных свойств покрытий смеси полистирола и полистиролсульфокислоты на плавленом кварцевом стекле // Науч. прибор. 2009. Т. 19. № 4. С. 51–58. https://www.elibrary.ru/kwrygp
  18. Карлушин К. А., Курбатова Е. Е., Медведева Е. В. Метод текстурной сегментации аэрокосмических изображений // Инфокоммуникационные технологии. 2012. Т. 10. № 4. С. 41–45. https://www.elibrary.ru/plufet

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Microphotographs of samples of model sorbent on quartz glass - composites based on a polymer matrix of diisocyanate with submicrometer particles of BaTiO3 in the amount of 10 (a), 20 (b), 30 (c), 40 (d) and 50 vol% (d).

Download (417KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».