Enhancement of the Fracture Toughness of Carbon-Reinforced Plastics by Introducing a Thermoplastic Phase into an Epoxy Matrix

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The effect of modifying additives of polyphenylene sulfone or a nonwoven polyamide material on the thermal and mechanical properties of carbon fabric/epoxy resin polymer composite materials prepared by vacuum forming and vacuum infusion was studied. The addition of 10 wt % polyphenylene sulfone leads to slight improvement of the mechanical properties of the composite material, whereas introduction of the nonwoven material leads to a 15% decrease in the compression strength and to a 6% decrease in the interlayer shear strength. The specific peel work increases by 15 and 270% for the composites modified with polyphenylene sulfone and nonwoven cloth, respectively. Introduction of 4 wt % nonwoven material enhances the fracture toughness of the polymer composite material by a factor of 3.7.

About the authors

I. V. Kutovaya

Faculty of Chemistry, Moscow State University

Email: acjournal.nauka.nw@yandex.ru
119991, Moscow, Russia

A. A. Aleksanova

Faculty of Chemistry, Moscow State University

Email: acjournal.nauka.nw@yandex.ru
119991, Moscow, Russia

E. M. Erdni-goryaev

Faculty of Chemistry, Moscow State University

Email: acjournal.nauka.nw@yandex.ru
119991, Moscow, Russia

Ya. V. Lipatov

Faculty of Chemistry, Moscow State University

Email: acjournal.nauka.nw@yandex.ru
119991, Moscow, Russia

E. S. Afanas'eva

Faculty of Chemistry, Moscow State University

Email: acjournal.nauka.nw@yandex.ru
119991, Moscow, Russia

O. S. Morozov

Faculty of Chemistry, Moscow State University

Email: acjournal.nauka.nw@yandex.ru
119991, Moscow, Russia

A. V. Babkin

Faculty of Chemistry, Moscow State University

Email: acjournal.nauka.nw@yandex.ru
119991, Moscow, Russia

A. V. Kepman

Faculty of Chemistry, Moscow State University

Author for correspondence.
Email: acjournal.nauka.nw@yandex.ru
119991, Moscow, Russia

References

  1. Pasquale G., Motta O., Recca A., Carter J. T., Mcgrail P. T., Acierno D. New high-performance thermoplastic toughened epoxy thermosets // Polymer. 1997. V. 38. N 17. P. 4345-4348. https://doi.org/10.1016/S0032-3861(96)01031-2
  2. Zhang Y., Zhao M., Zhang J., Shao Q., Li J., Li H., Lin B., Yu M., Chen S., Guo Z. Excellent corrosion protection performance of epoxy composite coatings filled with silane functionalized silicon nitride //j. Polym. Res. 2018. V. 25. ID 130. https://doi.org/10.1007/s10965-018-1518-2
  3. Wong D. W. Y., Lin L., McGrail P. T., Peijs T., Hogg P. J. Improved fracture toughness of carbon fibre/epoxy composite laminates using dissolvable thermoplastic fibres // Compos. Part A: Appl. Sci. Manuf. 2010. V. 41. P. 759-767. https://doi.org/10.1016/j.compositesa.2010.02.008
  4. Zhao C., Xiao J., Huang W., Huang X., Gu S. Layup quality evaluation of fiber trajectory based on prepreg tow deformability for automated fiber placement //j. Reinf. Plast.Compos. 2016. V. 35. N 21. P. 1576-1585. https://doi.org/10.1177/0731684416659933
  5. Zhao C., Xiao J., Li Y., Chu Q., Xu T., Wang B. An experimental study of the influence of in-plane fiber waviness on unidirectional laminates tensile properties // Appl.Compos. Mater. 2017. V. 24. P. 1321-1337. https://doi.org/10.1007/s10443-017-9590-z
  6. Zhao M., Meng L., Ma L., Ma L., Yang X., Huang Y., Ryu J. E., Shankar A., Li T., Yan C., Guo Z. Layer-by-layer grafting CNTs onto carbon fibers surface for enhancing the interfacial properties of epoxy resin composites // Compos. Sci. Technol. 2018. V. 154. P. 28-36. https://doi.org/10.1016/j.compscitech.2017.11.002
  7. Hu Z., Zhang D., Lu F., Yuan W., Xu X., Zhang Q., Liu H., Shao Q., Guo Z., Huang Y. Multistimuli-responsive intrinsic self-healing epoxy resin constructed by host-guest interactions // Macromolecules. 2018. V. 51. P. 5294-5303. https://doi.org/10.1021/acs.macromol.8b01124
  8. Hodgkin J. H., Simon G. P., Varley R. J. Thermoplastic toughening of epoxy resins: A critical review // Polym. Adv. Technol. 1998. V. 9. P. 3-10. https://doi.org/10.1002/(SICI)1099-1581(199801)9:1<3::AID-PAT727>3.0.CO;2-I
  9. Мухаметов Р. Р., Ахмадиева К. Р., Ким М. А., Бабин А. Н. Расплавные связующие для перспективных методов изготовления ПКМ нового поколения // Авиационные материалы и технологии. 2012. T. S. C. 260-265. EDN: PFTNGV
  10. Oyanguren P. A., Galante M. J., Andromaque K., Frontini P. M., Williams R. J. J. Development of bicontinuous morphologies in polysulfone-epoxy blends // Polymer (Guildf). 1999. V. 40. P. 5249-5255. https://doi.org/10.1016/S0032-3861(98)00742-3
  11. Babkin A. V., Erdni-Goryaev E. M., Solopchenko A. V., Kepman A. V., Avdeev V. V. Mechanical and thermal properties of modified bismaleimide matrices toughened by polyetherimides and polyimide // Polym. Adv. Technol. 2016. V. 27. P. 774-780. https://doi.org/10.1002/pat.3711
  12. Jin F. L., Park S. J. Thermal properties and toughness performance of hyperbranched-polyimide- modified epoxy resins //j. Polym. Sci. B: Polym. Phys. 2006. V. 44. P. 3348-3356. https://doi.org/10.1002/polb.20990
  13. Chen Y., Guo H., Geng C., Wu Y., Dai G., Teng C. Effect of poly(ether ether ketone) and allyl compounds on microstructure and properties of bismaleimide //j. Mater. Sci.: Mater. Electron. 2019. V. 30. P. 991-1000. https://doi.org/10.1007/s10854-018-0368-3
  14. Трещалин Ю. М. Композиционные материалы на основе нетканых полотен. Изд. БОС. 2015. С. 19-52.
  15. Faruk O., Bledzki A. K., Fink H. P., Sain M. Biocomposites reinforced with natural fibers: 2000-2010 // Prog. Polym. Sci. 2012. V. 37. N 11. P. 1552-1596. https://doi.org/10.1016/j.progpolymsci.2012.04.003
  16. Zhou S., Chen Z., Tusiime R., Cheng C., Sun Z., Xu L., Liu Y., Jiang M., Zhou J., Zhang H., Yu M. Highly improving the mechanical and thermal properties of epoxy resin via blending with polyetherketone cardo // Compos.Commun. 2019. V. 13. P. 80-84. https://doi.org/10.1016/j.coco.2019.03.003
  17. Колобков А. С. Влияние нетканых термопластичных материалов на прочность слоистых полимерных композитных материалов (обзор) // Тр. ВИАМ. 2020. № 9 (91). С. 44-51. https://doi.org/10.18577/2307-6046-2020-0-9-44-51
  18. Liu T., Xu M., Bai Z., Ren D., Xu X., Liu X. Toughening effect of self-assembled thermoplastic particles on phthalonitrile containing benzoxazine and improved mechanical properties in the presence of fibers reinforcement // Polymer (Guildf). 2022. V. 260. ID 125355. https://doi.org/10.1016/j.polymer.2022.125355
  19. Inamdar A., Cherukattu J., Anand A., Kandasubramanian B. Thermoplastic-toughened high-temperature cyanate esters and their application in advanced composites // Ind. Eng. Chem. Res. 2018. V. 57. N 13. P. 4479-4504. https://doi.org/10.1021/acs.iecr.7b05202
  20. Лобанов М. В., Гуляев А. И., Бабин А. Н. Повышение ударо- и трещиностойкости эпоксидных реактопластов и композитов на их основе с помощью добавок термопластов как модификаторов // Высокомолекуляр. соединения. Сер. Б. 2016. T. 58. C. 3-15. https://doi.org/10.7868/s2308113916010046
  21. Яковлев Н. О., Гуляев А. И., Лашов О. А. Трещиностойкость слоистых полимерных композиционных материалов (обзор) // Тр. ВИАМ. 2016. № 4 (40). С. 106-114. https://doi.org/10.18577/2307-6046-2016-0-4-12-12
  22. Pearson R. A., Yee A. F. Toughening mechanisms in thermoplastic-modified epoxies: 1. Modification using poly(phenylene oxide) // Polymer. 1993. V. 34. N 17. P. 3658-3670. https://doi.org/10.1016/0032-3861(93)90051-B
  23. Kinloch A. J., Lee S. H., Taylor A. C. Improving the fracture toughness and the cyclic-fatigue resistance of epoxy-polymer blends // Polymer (Guildf). 2014. V. 55. P. 6325-6334. https://doi.org/10.1016/j.polymer.2014.10.018
  24. Drakonakis V. M., Velisaris C. N., Seferis J. C., Doumanidis C. C., Wardle B. L., Papanicolaou G. C. Matrix hybridization in the interlayer for carbon fiber reinforced composites // Polym.Compos. 2010. V. 31. P. 1965-1976. https://doi.org/10.1002/pc.20996

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».