Microstructure and Thermal and Rheological Properties of Low-Molecular-Mass Ethylene–Vinyl Acetate Copolymer

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The microstructure of low-molecular-mass ethylene–vinyl acetate copolymers was studied by 1Н and 13С NMR spectroscopy. The vinyl acetate mole fraction, chain branching, and mean lengths of ethylene and vinyl acetate blocks were determined. The thermal properties of ethylene–vinyl acetate copolymers were studied by differential scanning calorimetry and thermogravimetric analysis, and the crystalline characteristics, by X-ray diffraction analysis. The degree of crystallinity of the copolymer decreases with an increase in the fraction of the polar comonomer. Rheological studies show that ethylene–vinyl acetate copolymers at room temperature tend to microphase segregation and form a microphase structural network.

作者简介

A. Morontsev

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia

Email: acjournal.nauka.nw@yandex.ru

G. Karpov

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia

Email: acjournal.nauka.nw@yandex.ru

S. Il'in

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia

Email: acjournal.nauka.nw@yandex.ru

K. Dement'ev

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia

Email: acjournal.nauka.nw@yandex.ru

M. Bermeshev

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia

编辑信件的主要联系方式.
Email: acjournal.nauka.nw@yandex.ru

参考

  1. Alothman O. Y. Processing and characterization of high density polyethylene/ethylene vinyl acetate blends with different va contents // Adv. Mater. Sci. Eng. 2012. V. 2012. P. 1-10. https://doi.org/10.1155/2012/635693
  2. Birajdar R. S., Chikkali S. H. Insertion copolymerization of functional olefins: Quo Vadis? // Eur. Polym. J. 2021. V. 143. ID 110183. https://doi.org/10.1016/j.eurpolymj.2020.110183
  3. Zarrouki A., Espinosa E., Boisson C., Monteil V. Free radical copolymerization of ethylene with vinyl acetate under mild conditions // Macromolecules. 2017. V. 50. N 9. P. 3516-3523. https://doi.org/10.1021/acs.macromol.6b02756
  4. Aggarwal S. L., Sweeting O. J. Polyethylene: Preparation, structure, and properties // Chem. Rev. 1957. V. 57. N 4. P. 665-742. https://doi.org/10.1021/cr50016a004
  5. Ghiass M., Hutchinson R. A. Simulation of free radical high-pressure copolymerization in a multizone autoclave: Model development and application // Polym. React. Eng. 2003. V. 11. N 4. P. 989-1015. https://doi.org/10.1081/PRE-120026882
  6. Костюк А. В., Смирнова Н. М., Антонов С. В., Ильин С. О. Реологические и адгезионные свойства клеев-расплавов на основе нефтеполимерных смол и полиэтиленвинилацетата // Высокомулекуляр. соединения. Сер. А. 2021. Т. 63. № 3. С. 184-197. https://doi.org/10.31857/S2308112021030081
  7. Choi S.-S., Chung Y. Y. Simple analytical method for determination of microstructures of poly(ethylene-covinyl acetate) using the melting points // Polym. Test. 2020. V. 90. ID 106706. https://doi.org/10.1016/j.polymertesting.2020.106706
  8. McKennell R. Cone-plate viscometer // Anal. Chem. 1956. V. 28. N 11. P. 1710-1714. https://doi.org/10.1021/ac60119a021
  9. Demarteau J., Scholten P. B. V., Kermagoret A., Winter J. D., Meier M. A. R., Monteil V., Debuigne A., Detrembleur C. Functional polyethylene (PE) and pebased block copolymers by organometallic-mediated radical polymerization // Macromolecules. 2019. V. 52. N 22. P. 9053-9063. https://doi.org/10.1021/acs.macromol.9b01741
  10. Naga N., Kikuchi G., Toyota A. Synthesis and crystalline structure of polyethylene containing 1,3-cylopentane units in the main chain by ring-opening metathesis copolymerization of cycloolefins following hydrogenation reaction // Polymer (Guildf). 2006. V. 47. N 17. P. 6081-6090. https://doi.org/10.1016/j.polymer.2006.06.015
  11. Ilyin S. O., Malkin A. Ya., Kulichikhin V. G., Denisova Yu. I., Krentsel L. B., Shandryuk G. A., Litmanovich A. D., Litmanovich E. A., Bondarenko G. N., Kudryavtsev Ya. V. Effect of chain structure on the rheological properties of vinyl acetate-vinyl alcohol copolymers in solution and bulk // Macromolecules. 2014. V. 47. N 14. P. 4790-4804. https://doi.org/10.1021/ma5003326
  12. Gorbacheva S. N., Yadykova A. Y., Ilyin S. O. Rheological and tribological properties of low-temperature greases based on cellulose acetate butyrate gel // Carbohydr. Polym. 2021. V. 272. ID 118509. https://doi.org/10.1016/j.carbpol.2021.118509
  13. Gorbacheva S. N., Yarmush Y. M., Ilyin S. O. Rheology and tribology of ester-based greases with microcrystalline cellulose and organomodified montmorillonite //Tribol.Int. 2020. V. 148. ID 106318. https://doi.org/10.1016/j.triboint.2020.106318

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».