Mesenchymal stromal cells as components of the hematopoietic microenvironment
- Authors: Payushina O.V.1, Mirzezade Z.E.1, Tsomartova D.A.1, Chereshneva E.V.1, Ivanova M.Y.1, Tsomartova E.S.1, Lomanovskaya T.A.1
-
Affiliations:
- Sechenov First Moscow Medical University
- Issue: Vol 86, No 3 (2025)
- Pages: 159-176
- Section: (Indexed in “Current Contents”)
- URL: https://bakhtiniada.ru/0044-4596/article/view/306112
- DOI: https://doi.org/10.31857/S0044459625030018
- EDN: https://elibrary.ru/bihfoj
- ID: 306112
Cite item
Abstract
Mesenchymal stromal cells (MSCs) located in the organs of embryonic and definitive hematopoiesis play a key role in organizing the hematopoietic microenvironment. Their regulatory effect on hematopoietic cells is associated mainly with paracrine production of cytokines and chemoattractants and with direct cell-to-cell interactions. In addition, MSCs are precursors of other cellular components of the hematopoietic niche, which also contribute to the maintenance of hematopoiesis. Data from many studies indicate a correlation of the hematopoietic activity of an organ at a particular developmental stage with the content and properties of MSCs. In the organs of embryonic hematopoiesis (such as placenta, liver, spleen), MSCs have signs of functional immaturity, in particular, a high capacity for proliferation with weak differentiation potential. Perhaps, organ and age differences in the properties of MSCs reflect the process of maturation of the hematopoietic niche during ontogenesis. In the prenatal period, the role of MSCs in the organization of the microenvironment may consist mainly in the trophic effect on hematopoietic cells, and in the postnatal period – in differentiation into specialized components of the stroma. Diseases of the blood system, such as aplastic anemia, myelodysplastic syndrome, acute leukemia, in many cases are accompanied by a decrease in the proliferative and osteogenic potential of MSCs and impairment of their ability to produce regulatory molecules. These changes, which worsen the quality of the hematopoietic niche formed by MSCs, may cause hematopoiesis disorders or contribute to their progression. A promising approach to the therapy of these diseases is the restoration of the pathologically altered hematopoietic microenvironment by transplantation of donor MSCs or pharmacological impact on the patient’s own MSCs.
About the authors
O. V. Payushina
Sechenov First Moscow Medical University
Email: payushina@mail.ru
Trubetskaya, 8, Bld. 2, Moscow, 119991 Russia
Z. E. Mirzezade
Sechenov First Moscow Medical University
Email: payushina@mail.ru
Trubetskaya, 8, Bld. 2, Moscow, 119991 Russia
D. A. Tsomartova
Sechenov First Moscow Medical University
Email: payushina@mail.ru
Trubetskaya, 8, Bld. 2, Moscow, 119991 Russia
E. V. Chereshneva
Sechenov First Moscow Medical University
Email: payushina@mail.ru
Trubetskaya, 8, Bld. 2, Moscow, 119991 Russia
M. Yu. Ivanova
Sechenov First Moscow Medical University
Email: payushina@mail.ru
Trubetskaya, 8, Bld. 2, Moscow, 119991 Russia
E. S. Tsomartova
Sechenov First Moscow Medical University
Email: payushina@mail.ru
Trubetskaya, 8, Bld. 2, Moscow, 119991 Russia
T. A. Lomanovskaya
Sechenov First Moscow Medical University
Author for correspondence.
Email: payushina@mail.ru
Trubetskaya, 8, Bld. 2, Moscow, 119991 Russia
References
- Вартанян Н.Л., Бессмельцев С.С., Семенова Н.Ю., Ругаль В.И., 2014. Мезенхимальные стромальные клетки при апластической анемии, гемобластозах и негематологических опухолях // Бюл. СО РАМН. Т. 34. № 6. С. 17–26.
- Домарацкая Е.И., Паюшина О.В., 2018. Происхождение стволовых кроветворных клеток в эмбриональном развитии // Журн. общ. биологии. Т. 79. № 5. С. 363–375. https://doi.org/10.1134/S0044459618050056
- Дорофеева А.И., Шипунова И.Н., Лучкин А.В., Фидарова З.Т., Михайлова Е.А., 2022. Характеристики мультипотентных мезенхимных стромальных клеток, полученных из костного мозга больных апластической анемией до начала лечения // Гематол. и трансфузиол. Т. 67. № S2. С. 193–194.
- Иванов П.А., Юрова К.А., Хазиахматова О.Г., Шуплецова В.В., Малащенко В.В. и др., 2021. Роль мезенхимных стромальных/стволовых клеток в регуляции кроветворения в 3D-культуре in vitro // Рос. иммунол. журн. Т. 44. № 2. С. 153–160. https://doi.org/10.46235/1028-7221-992-ROS
- Исайкина Я.И., Лях Е.Г., Емельянова И.В., Савич Ю.В., 2019. Исследование функциональных свойств мезенхимальных стволовых клеток костного мозга при апластической анемии у детей // Гематол. трансфузиол. Вост. Европа. Т. 5. № 2. С. 141–149.
- Исайкина Я., Лях Е., Новикова М., Савич Ю., Кеда Л., 2021. Пролиферативная активность мезенхимальных стволовых клеток из различных частей плаценты // Наука и инновации. № 7. С. 76–80. https://doi.org/10.29235/1818-9857-2021-7-76-80
- Кожевникова М.Н., Микаелян А.С., Старостин В.И., 2009. Молекулярно-генетический и иммунофенотипический анализ антигенного профиля, остеогенных и адипогенных потенций мезенхимных стромальных клеток из печени зародышей и костного мозга половозрелых крыс // Цитология. Т. 51. № 6. С. 526–538.
- Лебединская О.В., Горская Ю.Ф., Шуклина Е.Ю., Лациник Н.В., Нестеренко В.Г., 2005. Анализ изменений количества стромальных клеток-предшественников в тимусе и селезенке животных различных возрастных групп // Морфология. Т. 127. № 3. С. 41–44.
- Лубкова О.Н., Цветаева Н.В., Момотюк К.С., Белкин В.М., Манакова Т.Е., 2011. Экспрессия VCAM-1 на стромальных клетках из костного мозга больных миелодиспластическими синдромами // Бюл. эксперим. биол. и мед. Т. 151. № 1. С. 17–20.
- Марейко Ю.Е., Исайкина Я.И., Савва Н.Н., Алейникова О.В., 2013. Влияние котрансплантации мезенхимальных стволовых клеток на восстановление гемопоэза и частоту развития острой реакции “трансплантат против хозяина” после аллогенной трансплантации гемопоэтических стволовых клеток у детей // Вопр. гематол. онкол. и иммунопатол. в педиатрии. Т. 12. № 4. С. 13–18.
- Паюшина О.В., Буеверова Э.И., Сатдыкова Г.П., Старостин В.И., Домарацкая Е.И., Хрущов Н.Г., 2004. Сравнительное исследование мезенхимных стволовых клеток, выделенных из костного мозга и эмбриональной печени мыши и крысы // Изв. РАН. Сер. биол. № 6. С. 659–664.
- Паюшина О.В., Буторина H.Н., Никонова Т.М., Кожевникова M.Н., Шевелева О.Н., Старостин В.И., 2011. Сравнительное исследование клонального роста и дифференцировки мезенхимных стромальных клеток из печени зародышей крысы на разных сроках пренатального развития // Цитология. Т. 53. № 11. С. 859–867.
- Паюшина О.В., Буторина Н.Н., Шевелева О.Н., Бухинник С.С., Березина А.А. и др., 2017. Сравнительное исследование мезенхимных стромальных клеток костного мозга на разных стадиях индивидуального развития // Онтогенез. Т. 48. № 4. С. 315–324. https://doi.org/10.7868/S0475145017040085
- Паюшина О.В., Буторина Н.Н., Шевелева О.Н., Бухинник С.С., Старостин В.И., 2013. Мезенхимальные стромальные клетки селезенки крысы в пренатальном и постнатальном онтогенезе: сравнительный анализ клонального роста, фенотипа и потенций к дифференцировке // Клеточные технологии в биологии и медицине. № 4. С. 223–230.
- Петинати Н.А., Садовская А.В., Васильева А.Н., Алешина О.А., Арапиди Г.П. и др., 2024. Протеом мультипотентных мезенхимных стромальных клеток костного мозга у больных острым миелоидным лейкозом // Гематол. и трансфузиол. Т. 69. № 2. Прилож. С. 129.
- Ругаль В.И., Семенова Н.Ю., Бессмельцев С.С., 2019. Формирование стромального микроокружения и становление гемопоэза в фетальной губчатой кости // Вестн. гематол. Т. 15. № 4. С. 14–18.
- Сорокина Т.В., Шипунова И.Н., Бигильдеев А.Е., Дризе Н.И., Кузьмина Л.А. и др., 2016. Изменение уровней экспрессии генов в мультипотентных мезенхимных стромальных клетках, полученных из костного мозга больных острыми лейкозами в процессе терапии // Гематол. и трансфузиол. Т. 61. № 3. С. 126–133. https://doi.org/10.18821/0234-5730/2016-61-3-126-133
- Старостин В.И., Домарацкая Е.И., 2001. Хондро- и остеогенез в эктопических трансплантатах печени зародышей мышей // Онтогенез. Т. 32. № 2. С. 114–117.
- Шевела Е.Я., Кулагин А.Д., Тихонова М.А., Сахно Л.В., Крючкова И.В. и др., 2010. Апластическая анемия: фенотип и функции мезенхимальных стромальных клеток костного мозга // Гематол. и трансфузиол. Т. 55. № 6. С. 14–21.
- Andrzejewska A., Lukomska B., Janowski M., 2019. Concise review: Mesenchymal stem cells: From roots to boost // Stem Cells. V. 37. № 7. P. 855–864. https://doi.org/10.1002/stem.3016
- Anthony B.A., Link D.C., 2014. Regulation of hematopoietic stem cells by bone marrow stromal cells // Trends Immunol. V. 35. № 1. P. 32–37. https://doi.org/10.1016/j.it.2013.10.002
- Aoki K., Kurashige M., Ichii M., Higaki K., Sugiyama T., et al., 2021. Identification of CXCL12-abundant reticular cells in human adult bone marrow // Br. J. Haematol. V. 193. № 3. P. 659–668. https://doi.org/10.1111/bjh.17396
- Asada N., Kunisaki Y., Pierce H., Wang Z., Fernandez N.F., et al., 2017. Differential cytokine contributions of perivascular haematopoietic stem cell niches // Nat. Cell Biol. V. 19. № 3. P. 214–223. https://doi.org/10.1038/ncb3475
- Atmar K., Tulling A.J., Lankester A.C., Bartels M., Smiers F.J., et al., 2022. Functional and immune modulatory characteristics of bone marrow mesenchymal stromal cells in patients with aplastic anemia: A systematic review // Front. Immunol. V. 13. Art. 859668. https://doi.org/10.3389/fimmu.2022.859668
- Azadniv M., Myers J.R., McMurray H.R., Guo N., Rock P., et al., 2020. Bone marrow mesenchymal stromal cells from acute myelogenous leukemia patients demonstrate adipogenic differentiation propensity with implications for leukemia cell support // Leukemia. V. 34. № 2. P. 391–403. https://doi.org/10.1038/s41375-019-0568-8
- Babenko V.A., Silachev D.N., Danilina T.I., Goryunov K.V., Pevzner I.B., et al., 2021. Age-related changes in bone-marrow mesenchymal stem cells // Cells. V. 10. № 6. Art. 1273. https://doi.org/10.3390/cells10061273
- Baker N., Boyette L.B., Tuan R.S., 2015. Characterization of bone marrow-derived mesenchymal stem cells in aging // Bone. V. 70. P. 37–47. https://doi.org/10.1016/j.bone.2014.10.014
- Boada M., Echarte L., Guillermo C., Diaz L., Touriño C., Grille S., 2021. 5-Azacytidine restores interleukin 6-increased production in mesenchymal stromal cells from myelodysplastic patients // Hematol. Transfus. Cell Ther. V. 43. № 1. P. 35–42. https://doi.org/10.1016/j.htct.2019.12.002
- Campagnoli C., Roberts I.A., Kumar S., Bennett P.R., Bellantuono I., Fisk N.M., 2001. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow // Blood. V. 98. № 8. P. 2396–2402. https://doi.org/10.1182/blood.v98.8.2396
- Castrechini N.M., Murthi P., Gude N.M., Erwich J.J., Gronthos S., et al., 2010. Mesenchymal stem cells in human placental chorionic villi reside in a vascular niche // Placenta. V. 31. № 3. P. 203–212. https://doi.org/10.1016/j.placenta.2009.12.006
- Chao Y.H., Lin C.W., Pan H.H., Yang S.F., Weng T.F., et al., 2018. Increased apoptosis and peripheral blood mononuclear cell suppression of bone marrow mesenchymal stem cells in severe aplastic anemia // Pediatr. Blood Cancer. V. 65. № 9. Art. e27247. https://doi.org/10.1002/pbc.27247
- Corradi G., Baldazzi C., Očadlíková D., Marconi G., Parisi S., et al., 2018. Mesenchymal stromal cells from myelodysplastic and acute myeloid leukemia patients display in vitro reduced proliferative potential and similar capacity to support leukemia cell survival // Stem Cell Res. Ther. V. 9. № 1. Art. 271. https://doi.org/10.1186/s13287-018-1013-z
- Corre J., Barreau C., Cousin B., Chavoin J.P., Caton D., et al., 2006. Human subcutaneous adipose cells support complete differentiation but not self-renewal of hematopoietic progenitors // J. Cell. Physiol. V. 208. № 2. P. 282–288. https://doi.org/10.1002/jcp.20655
- De Toni F., Poglio S., Youcef A.B., Cousin B., Pflumio F., et al., 2011. Human adipose-derived stromal cells efficiently support hematopoiesis in vitro and in vivo: A key step for therapeutic studies // Stem Cells Dev. V. 20. № 12. P. 2127–2138. https://doi.org/10.1089/scd.2011.0044
- Deniz I.A., Karbanová J., Wobus M., Bornhäuser M., Wimberger P., et al., 2023. Mesenchymal stromal cell-associated migrasomes: A new source of chemoattractant for cells of hematopoietic origin // Cell Commun. Signal. V. 21. № 1. Art. 36. https://doi.org/10.1186/s12964-022-01028-6
- Dominici M., Le Blanc K., Mueller I., Slaper-Cortenbach I., Marini F., et al., 2006. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement // Cytotherapy. V. 8. № 4. P. 315–317. https://doi.org/10.1080/14653240600855905
- Fathi E., Mesbah-Namin S.A., Vietor I., Farahzadi R., 2022. Mesenchymal stem cells cause induction of granulocyte differentiation of rat bone marrow C-kit+ hematopoietic stem cells through JAK3/STAT3, ERK, and PI3K signaling pathways // Iran. J. Basic Med. Sci. V. 25. № 10. P. 1222–1227. https://doi.org/10.22038/IJBMS.2022.66737.14633
- Friedenstein A.J., Chailakhyan R.K., Gerasimov U.V., 1987. Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers // Cell Tissue Kinet. V. 20. № 3. P. 263–272. https://doi.org/10.1111/j.1365-2184.1987.tb01309.x
- Friedenstein A.J., Gorskaja J.F., Kulagina N.N., 1976. Fibroblast precursors in normal and irradiated mouse hematopoietic organs // Exp. Hematol. V. 4. № 5. P. 267–274.
- Fromigué O., Hamidouche Z., Chateauvieux S., Charbord P., Marie P.J., 2008. Distinct osteoblastic differentiation potential of murine fetal liver and bone marrow stroma-derived mesenchymal stem cells // J. Cell Bio-chem. V. 104. № 2. P. 620–628. https://doi.org/10.1002/jcb.21648
- Garde M., van der, Pel M., van, Millán Rivero J.E., Graaf-Dijkstra A., de, Slot M.C., et al., 2015. Direct comparison of Wharton’s jelly and bone marrow-derived mesenchymal stromal cells to enhance engraftment of cord blood CD34(+) transplants // Stem Cells Dev. V. 24. № 22. P. 2649–2659. https://doi.org/10.1089/scd.2015.0138
- Gençer E.B., Lor Y.K., Abomaray F., El Andaloussi S., Pernemalm M., et al., 2024. Transcriptomic and proteomic profiles of fetal versus adult mesenchymal stromal cells and mesenchymal stromal cell-derived extracellular vesicles // Stem Cell Res. Ther. V. 15. № 1. Art. 77. https://doi.org/10.1186/s13287-024-03683-7
- Gerlach J.C., Over P., Turner M.E., Thompson R.L., Foka H.G., et al., 2012. Perivascular mesenchymal progenitors in human fetal and adult liver // Stem Cells Dev. V. 21. № 18. P. 3258–3269. https://doi.org/10.1089/scd.2012.0296
- Geyh S., Oz S., Cadeddu R.P., Fröbel J., Brückner B., et al., 2013. Insufficient stromal support in MDS results from molecular and functional deficits of mesenchymal stromal cells // Leukemia. V. 27. № 9. P. 1841–1851. https://doi.org/10.1038/leu.2013.193
- Geyh S., Rodríguez-Paredes M., Jäger P., Khandanpour C., Cadeddu R.P., et al., 2016. Functional inhibition of mesenchymal stromal cells in acute myeloid leukemia // Leukemia. V. 30. № 3. P. 683–691. https://doi.org/10.1038/leu.2015.325
- Geyh S., Rodríguez-Paredes M., Jäger P., Koch A., Bormann F., et al., 2018. Transforming growth factor β1-mediated functional inhibition of mesenchymal stromal cells in myelodysplastic syndromes and acute myeloid leukemia // Haematologica. V. 103. № 9. P. 1462–1471. https://doi.org/10.3324/haematol.2017.186734
- Götherström C., West A., Liden J., Uzunel M., Lahesmaa R., Le Blanc K., 2005. Difference in gene expression between human fetal liver and adult bone marrow mesenchymal stem cells // Haematologica. V. 90. № 8. P. 1017–1026.
- Guerrero E.N., Vega S., Fu C., León R., de, Beltran D., Solis M.A., 2021. Increased proliferation and differentiation capacity of placenta-derived mesenchymal stem cells from women of median maternal age correlates with telomere shortening // Aging (Albany NY). V. 13. № 22. P. 24542–24559. https://doi.org/10.18632/aging.203724
- Guillot P.V., Bari C., de, Dell’Accio F., Kurata H., Polak J., Fisk N.M., 2008. Comparative osteogenic transcription profiling of various fetal and adult mesenchymal stem cell sources // Differentiation. V. 76. № 9. P. 946–957. https://doi.org/10.1111/j.1432-0436.2008.00279.x
- Guillot P.V., Gotherstrom C., Chan J., Kurata H., Fisk N.M., 2007. Human first-trimester fetal MSC express pluripotency markers and grow faster and have longer telomeres than adult MSC // Stem Cells. V. 25. № 3. P. 646–654. https://doi.org/10.1634/stemcells.2006-0208
- Gurevitch O., Slavin S., Resnick I., Khitrin S., Feldman A., 2009. Mesenchymal progenitor cells in red and yellow bone marrow // Folia Biol. (Praha). V. 55. № 1. P. 27–34.
- Haga C.L., Boregowda S.V., Booker C.N., Krishnappa V., Strivelli J., et al., 2023. Mesenchymal stem/stromal cells from a transplanted, asymptomatic patient with Fanconi anemia exhibit an aging-like phenotype and dysregulated expression of genes implicated in hematopoiesis and myelodysplasia // Cytotherapy. V. 25. № 4. P. 362–368. https://doi.org/10.1016/j.jcyt.2022.11.003
- Han Z.C., Du W.J., Han Z.B., Liang L., 2017. New insights into the heterogeneity and functional diversity of human mesenchymal stem cells // Biomed. Mater. Eng. V. 28. № S1. P. S29–S45. https://doi.org/10.3233/BME-171622
- Hanoun M., Zhang D., Mizoguchi T., Pinho S., Pierce H., et al., 2014. Acute myelogenous leukemia-induced sympathetic neuropathy promotes malignancy in an altered hematopoietic stem cell niche // Cell. Stem Cell. V. 15. № 3. P. 365–375. https://doi.org/10.1016/j.stem.2014.06.020
- Hegyi B., Sági B., Kovács J., Kiss J., Urbán V.S., et al., 2010. Identical, similar or different? Learning about immunomodulatory function of mesenchymal stem cells isolated from various mouse tissues: bone marrow, spleen, thymus and aorta wall // Int. Immunol. V. 22. № 7. P. 551–559. https://doi.org/10.1093/intimm/dxq039
- Hiwase S.D., Dyson P.G., To L.B., Lewis I.D., 2009. Cotransplantation of placental mesenchymal stromal cells enhances single and double cord blood engraftment in nonobese diabetic/severe combined immune deficient mice // Stem Cells. V. 27. № 9. P. 2293–2300. https://doi.org/10.1002/stem.157
- Hoogduijn M.J., Crop M.J., Peeters A.M., Osch G.J., van, Balk A.H., et al., 2007. Human heart, spleen, and perirenal fat-derived mesenchymal stem cells have immunomodulatory capacities // Stem Cells Dev. V. 16. № 4. P. 597–604. https://doi.org/10.1089/scd.2006.0110
- Huang K., Zhou D.H., Huang S.L., Liang S.H., 2005. [Age-related biological characteristics of human bone marrow mesenchymal stem cells from different age donors] // Zhongguo Shi Yan Xue Ye Xue Za Zhi. V. 13. № 6. P. 1049–1053 (in Chinese).
- Huo J., Zhang L., Ren X., Li C., Li X., et al., 2020. Multifaceted characterization of the signatures and efficacy of mesenchymal stem/stromal cells in acquired aplastic anemia // Stem Cell Res. Ther. V. 11. № 1. Art. 59. https://doi.org/10.1186/s13287-020-1577-2
- In’t Anker P.S., Noort W.A., Scherjon S.A., Kleijburg-van der Keur C., Kruisselbrink A.B., et al., 2003. Mesenchymal stem cells in human second-trimester bone marrow, liver, lung, and spleen exhibit a similar immunophenotype but a heterogeneous multilineage differentiation potential // Haematologica. V. 88. № 8. P. 845–852.
- Inra C.N., Zhou B.O., Acar M., Murphy M.M., Richardson J., et al., 2015. A perisinusoidal niche for extramedullary haematopoiesis in the spleen // Nature. V. 527. № 7579. P. 466–471. https://doi.org/10.1038/nature15530
- Jones G.N., Moschidou D., Puga-Iglesias T.I., Kuleszewicz K., Vanleene M., et al., 2012. Ontological differences in first compared to third trimester human fetal placental chorionic stem cells // PLoS One. V. 7. № 9. Art. e43395. https://doi.org/10.1371/journal.pone.0043395
- Kadekar D., Kale V., Limaye L., 2015. Differential ability of MSCs isolated from placenta and cord as feeders for supporting ex vivo expansion of umbilical cord blood derived CD34(+) cells // Stem Cell Res. Ther. V. 6. Art. 201. https://doi.org/10.1186/s13287-015-0194-y
- Katsiani E., Garas A., Skentou C., Tsezou A., Messini C.I., et al., 2016. Chorionic villi derived mesenchymal like stem cells and expression of embryonic stem cells markers during long-term culturing // Cell Tissue Bank. V. 17. № 3. P. 517–529. https://doi.org/10.1007/s10561-016-9559-4
- Khodadi E., Shahrabi S., Shahjahani M., Azandeh S., Saki N., 2016. Role of stem cell factor in the placental niche // Cell Tissue Res. V. 366. № 3. P. 523–531. https://doi.org/10.1007/s00441-016-2429-3
- Kordes C., Sawitza I., Götze S., Häussinger D., 2013. Hepatic stellate cells support hematopoiesis and are liver-resident mesenchymal stem cells // Cell Physiol. Biochem. V. 31. № 2–3. P. 290–304. https://doi.org/10.1159/000343368
- Kurosawa S., Iwama A., 2020. Aging and leukemic evolution of hematopoietic stem cells under various stress conditions // Inflamm. Regen. V. 40. № 1. Art. 29. https://doi.org/10.1186/s41232-020-00138-3
- Larijani B., Aghayan H.R., Goodarzi P., Arjmand B., 2015. GMP-grade human fetal liver-derived mesenchymal stem cells for clinical transplantation // Methods Mol. Biol. V. 1283. P. 123–136. https://doi.org/10.1007/7651_2014_101
- Lau S.X., Leong Y.Y., Ng W.H., Ng A.W.P., Ismail I.S., et al., 2017. Human mesenchymal stem cells promote CD34+ hematopoietic stem cell proliferation with preserved red blood cell differentiation capacity // Cell Biol. Int. V. 41. № 6. P. 697–704. https://doi.org/10.1002/cbin.10774
- Le Y., Fraineau S., Chandran P., Sabloff M., Brand M., et al., 2016. Adipogenic mesenchymal stromal cells from bone marrow and their hematopoietic supportive role: Towards understanding the permissive marrow microenvironment in acute myeloid leukemia // Stem Cell Rev. Rep. V. 12. № 2. P. 235–244. https://doi.org/10.1007/s12015-015-9639-z
- Lee G.Y., Jeong S.Y., Lee H.R., Oh I.H., 2019. Age-related differences in the bone marrow stem cell niche generate specialized microenvironments for the distinct regulation of normal hematopoietic and leukemia stem cells // Sci. Rep. V. 9. № 1. Art. 1007. https://doi.org/10.1038/s41598-018-36999-5
- Li T., Wu Y., 2011. Paracrine molecules of mesenchymal stem cells for hematopoietic stem cell niche // Bone Marrow Res. V. 2011. Art. 353878. https://doi.org/10.1155/2011/353878
- Li X., Bai J., Ji X., Li R., Xuan Y., Wang Y., 2014. Comprehensive characterization of four different populations of human mesenchymal stem cells as regards their immune properties, proliferation and differentiation // Int. J. Mol. Med. V. 34. № 3. P. 695–704. https://doi.org/10.3892/ijmm.2014.1821
- Liu M., Yang S.G., Xing W., Lu S.H., Zhao Q.J., et al., 2011. Comparison of hematopoietic supportive capacity between human fetal and adult bone marrow mesenchymal stem cells in vitro // Zhongguo Shi Yan Xue Ye Xue Za Zhi. V. 19. № 4. P. 1028–1032.
- Martin M.A., Bhatia M., 2005. Analysis of the human fetal liver hematopoietic microenvironment // Stem Cells Dev. V. 14. № 5. P. 493–504. https://doi.org/10.1089/scd.2005.14.493
- Massaro F., Corrillon F., Stamatopoulos B., Dubois N., Ruer A., et al., 2023. Age-related changes in human bone marrow mesenchymal stromal cells: Morphology, gene expression profile, immunomodulatory activity and miRNA expression // Front. Immunol. V. 14. Art. 1267550. https://doi.org/10.3389/fimmu.2023.1267550
- Méndez-Ferrer S., Michurina T.V., Ferraro F., Mazloom A.R., Macarthur B.D., et al., 2010. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche // Nature. V. 466. № 7308. P. 829–834. https://doi.org/10.1038/nature09262
- Michelozzi I.M., Pievani A., Pagni F., Antolini L., Verna M., et al., 2017. Human aplastic anaemia-derived mesenchymal stromal cells form functional haematopoietic stem cell niche in vivo // Br. J. Haematol. V. 179. № 4. P. 669–673. https://doi.org/10.1111/bjh.14234
- Mistry J.J., Marlein C.R., Moore J.A., Hellmich C., Wojtowicz E.E., et al., 2019. ROS-mediated PI3K activation drives mitochondrial transfer from stromal cells to hematopoietic stem cells in response to infection // Proc. Natl Acad. Sci. USA. V. 116. № 49. P. 24610–24619. https://doi.org/10.1073/pnas.1913278116
- Nakao N., Nakayama T., Yahata T., Muguruma Y., Saito S., et al., 2010. Adipose tissue-derived mesenchymal stem cells facilitate hematopoiesis in vitro and in vivo: Advantages over bone marrow-derived mesenchymal stem cells // Am. J. Pathol. V. 177. № 2. P. 547–554. https://doi.org/10.2353/ajpath.2010.091042
- Nakatani T., Sugiyama T., Omatsu Y., Watanabe H., Kondoh G., Nagasawa T., 2023. Ebf3+ niche-derived CXCL12 is required for the localization and maintenance of hematopoietic stem cells // Nat. Commun. V. 14. № 1. Art. 6402. https://doi.org/10.1038/s41467-023-42047-2
- Nakatsuka R., Matsuoka Y., Uemura Y., Sumide K., Iwaki R., et al., 2015. Mouse dental pulp stem cells support human umbilical cord blood-derived hematopoietic stem/progenitor cells in vitro // Cell Transplant. V. 24. № 1. P. 97–113. https://doi.org/10.3727/096368913X674675
- Omatsu Y., Sugiyama T., Kohara H., Kondoh G., Fujii N., et al., 2010. The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche // Immunity. V. 33. № 3. P. 387–399. https://doi.org/10.1016/j.immuni.2010.08.017
- O’Neill H.C., Lim H.K., 2023. Skeletal stem/progenitor cells provide the niche for extramedullary hematopoiesis in spleen // Front. Physiol. V. 14. Art. 1148414. https://doi.org/10.3389/fphys.2023.1148414
- O’Neill H.C., Lim H.K., Periasamy P., Kumarappan L., Tan J.K.H., O’Neill T.J., 2019. Transplanted spleen stromal cells with osteogenic potential support ectopic myelopoiesis // PLoS One. V. 14. № 10. Art. e0223416. https://doi.org/10.1371/journal.pone.0223416
- Ostanin A.A., Petrovskii Y.L., Shevela E.Y., Chernykh E.R., 2011. Multiplex analysis of cytokines, chemokines, growth factors, MMP-9 and TIMP-1 produced by human bone marrow, adipose tissue, and placental mesenchymal stromal cells // Bull. Exp. Biol. Med. V. 151. № 1. P. 133–141. https://doi.org/10.1007/s10517-011-1275-2
- Oubari F., Amirizade N., Mohammadpour H., Nakhlestani M., Zarif M.N., 2015. The important role of FLT3-L in ex vivo expansion of hematopoietic stem cells following co-culture with mesenchymal stem cells // Cell J. V. 17. № 2. P. 201–210. https://doi.org/10.22074/cellj.2016.3715
- Paciejewska M.M., Maijenburg M.W., Gilissen C., Kleijer M., Vermeul K., et al., 2016. Different balance of Wnt signaling in adult and fetal bone marrow-derived mesenchymal stromal cells // Stem Cells Dev. V. 25. № 12. P. 934–947. https://doi.org/10.1089/scd.2015.0263
- Park S., Koh S.E., Hur C.Y., Lee W.D., Lim J., Lee Y.J., 2013. Comparison of human first and third trimester placental mesenchymal stem cell // Cell Biol. Int. V. 37. № 3. P. 242–249. https://doi.org/10.1002/cbin.10032
- Pelekanos R.A., Sardesai V.S., Futrega K., Lott W.B., Kuhn M., Doran M.R., 2016. Isolation and expansion of mesenchymal stem/stromal cells derived from human placenta tissue // J. Vis. Exp. V. 6. № 112. Art. 54204. https://doi.org/10.3791/54204
- Pendse S., Kale V., Vaidya A., 2022. The intercellular communication between mesenchymal stromal cells and hematopoietic stem cells critically depends on NF-κB signalling in the mesenchymal stromal cells // Stem Cell Rev. Rep. V. 18. № 7. P. 2458–2473. https://doi.org/10.1007/s12015-022-10364-6
- Petvises S., Tran V., Hey Y.Y., Talaulikar D., O’Neill T.J., et al., 2022. Extramedullary hematopoiesis: mesenchymal stromal cells from spleen provide an in vitro niche for myelopoiesis // In Vitro Cell Dev. Biol. Anim. V. 58. № 5. P. 429–439. https://doi.org/10.1007/s11626-022-00693-8
- Pilz G.A., Ulrich C., Ruh M., Abele H., Schäfer R., et al., 2011. Human term placenta-derived mesenchymal stromal cells are less prone to osteogenic differentiation than bone marrow-derived mesenchymal stromal cells // Stem Cells Dev. V. 20. № 4. P. 635–646. https://doi.org/10.1089/scd.2010.0308
- Poloni A., Rosini V., Mondini E., Maurizi G., Mancini S., et al., 2008. Characterization and expansion of mesenchymal progenitor cells from first-trimester chorionic villi of human placenta // Cytotherapy. V. 10. № 7. P. 690–697. https://doi.org/10.1080/14653240802419310
- Poon Z., Dighe N., Venkatesan S.S., Cheung A.M.S., Fan X., et al., 2019. Bone marrow MSCs in MDS: Contribution towards dysfunctional hematopoiesis and potential targets for disease response to hypomethylating therapy // Leukemia. V. 33. № 6. P. 1487–1500. https://doi.org/10.1038/s41375-018-0310-y
- Prasad P., Cancelas J.A., 2024. From marrow to bone and fat: Exploring the multifaceted roles of leptin receptor positive bone marrow mesenchymal stromal cells // Cells. V. 13. № 11. Art. 910. https://doi.org/10.3390/cells13110910
- Raman R., Kumar R.S., Hinge A., Kumar S., Nayak R., et al., 2013. p190-B RhoGAP regulates the functional composition of the mesenchymal microenvironment // Leukemia. V. 27. № 11. P. 2209–2219. https://doi.org/10.1038/leu.2013.103
- Ryan J.M., Matigian N., Pelekanos R.A., Jesuadian S., Wells C.A., Fisk N.M., 2014. Transcriptional ontogeny of first trimester human fetal and placental mesenchymal stem cells: Gestational age versus niche // Genom. Data. V. 2. P. 382–385. https://doi.org/10.1016/j.gdata.2014.10.016
- Ryu J.H., Park M., Kim B.K., Kim Y.H., Woo S.Y., Ryu K.H., 2016. Human tonsil-derived mesenchymal stromal cells enhanced myelopoiesis in a mouse model of allogeneic bone marrow transplantation // Mol. Med. Rep. V. 14. № 4. P. 3045–3051. https://doi.org/10.3892/mmr.2016.5604
- Sardesai V.S., Shafiee A., Fisk N.M., Pelekanos R.A., 2017. Avoidance of maternal cell contamination and overgrowth in isolating fetal chorionic villi mesenchymal stem cells from human term placenta // Stem Cells Transl. Med. V. 6. № 4. P. 1070–1084. https://doi.org/10.1002/sctm.15-0327
- Sarıkaya A., Aydın G., Özyüncü Ö., Şahin E., Uçkan-Çetinkaya D., Aerts-Kaya F., 2022. Comparison of immune modulatory properties of human multipotent mesenchymal stromal cells derived from bone marrow and placenta // Biotech. Histochem. V. 97. № 2. P. 79–89. https://doi.org/10.1080/10520295.2021.1885739
- Sarvar D.P., Effatpanah H., Akbarzadehlaleh P., Shamsasenjan K., 2022. Mesenchymal stromal cell-derived extracellular vesicles: Novel approach in hematopoietic stem cell transplantation // Stem Cell Res. Ther. V. 13. № 1. Art. 202. https://doi.org/10.1186/s13287-022-02875-3
- Saxena P., Srivastava J., Rai B., Tripathy N.K., Raza S., et al., 2024. Elevated senescence in the bone marrow mesenchymal stem cells of acquired aplastic anemia patients: A possible implication of DNA damage responses and telomere attrition // Biochim. Biophys. Acta Mol. Basis Dis. V. 1870. № 3. Art. 167025. https://doi.org/10.1016/j.bbadis.2024.167025
- Servais S., Baron F., Lechanteur C., Seidel L., Baudoux E., et al., 2023. Multipotent mesenchymal stromal cells as treatment for poor graft function after allogeneic hematopoietic cell transplantation: A multicenter prospective analysis // Front. Immunol. V. 14. Art. 1106464. https://doi.org/10.3389/fimmu.2023.1106464
- Seshi B., Kumar S., Sellers D., 2000. Human bone marrow stromal cell: Coexpression of markers specific for multiple mesenchymal cell lineages // Blood Cells Mol. Dis. V. 26. № 3. P. 234–246. https://doi.org/10.1006/bcmd.2000.0301
- Sharma V., Rawat S., Gupta S., Tamta S., Sharma R., et al., 2021. Human acquired aplastic anemia patients’ bone-marrow-derived mesenchymal stem cells are not influenced by hematopoietic compartment and maintain stemness and immune properties // Anemia. V. 2021. Art. 6678067. https://doi.org/10.1155/2021/6678067
- Signore M., Cerio A.M., Boe A., Pagliuca A., Zaottini V., et al., 2012. Identity and ranking of colonic mesenchymal stromal cells // J. Cell. Physiol. V. 227. № 9. P. 3291–3300. https://doi.org/10.1002/jcp.24027
- Singh A.K., Prasad P., Cancelas J.A., 2023. Mesenchymal stromal cells, metabolism, and mitochondrial transfer in bone marrow normal and malignant hematopoiesis // Front. Cell Dev. Biol. V. 11. Art. 1325291. https://doi.org/10.3389/fcell.2023.1325291
- Sivaraj K.K., Jeong H.W., Dharmalingam B., Zeuschner D., Adams S., et al., 2021. Regional specialization and fate specification of bone stromal cells in skeletal development // Cell Rep. V. 36. № 2. Art. 109352. https://doi.org/10.1016/j.celrep.2021.109352
- Takam Kamga P., Bazzoni R., Dal Collo G., Cassaro A., Tanasi I., et al., 2021. The role of Notch and Wnt signaling in MSC communication in normal and leukemic bone marrow niche // Front. Cell Dev. Biol. V. 8. Art. 599276. https://doi.org/10.3389/fcell.2020.599276
- Tang Z.L., Jing W., 2022. [Age-related changes in differentiation of bone marrow mesenchymal stem cells and the activity of Notch signaling pathway] // Shanghai Kou Qiang Yi Xue. V. 31. № 2. P. 120–125 (in Chinese).
- Tarnowski M., Koryciak-Komarska H., Czekaj P., Sebesta R., Czekaj T.M., et al., 2007. The comparison of multipotential for differentiation of progenitor mesenchymal-like stem cells obtained from livers of young and old rats // Folia Histochem. Cytobiol. V. 45. № 3. P. 245–254.
- Tratwal J., Rojas-Sutterlin S., Bataclan C., Blum S., Naveiras O., 2021. Bone marrow adiposity and the hematopoietic niche: A historical perspective of reciprocity, heterogeneity, and lineage commitment // Best Pract. Res. Clin. Endocrinol. Metab. V. 35. № 4. Art. 101564. https://doi.org/10.1016/j.beem.2021.101564
- Van den Heuvel R.L., Versele S.R., Schoeters G.E., Vanderborght O.L., 1987. Stromal stem cells (CFU-f) in yolk sac, liver, spleen and bone marrow of pre- and postnatal mice // Br. J. Haematol. V. 66. № 1. P. 15–20. https://doi.org/10.1111/j.1365-2141.1987.tb06884.x
- Ventura Ferreira M.S., Bienert M., Müller K., Rath B., Goecke T., et al., 2018. Comprehensive characterization of chorionic villi-derived mesenchymal stromal cells from human placenta // Stem Cell Res. Ther. V. 9. № 1. Art. 28. https://doi.org/10.1186/s13287-017-0757-1
- Wagner W., Roderburg C., Wein F., Diehlmann A., Frankhauser M., et al., 2007. Molecular and secretory profiles of human mesenchymal stromal cells and their abilities to maintain primitive hematopoietic progenitors // Stem Cells. V. 25. № 10. P. 2638–2647. https://doi.org/10.1634/stemcells.2007-0280
- Wang X.Y., Lan Y., He W.Y., Zhang L., Yao H.Y., et al., 2008. Identification of mesenchymal stem cells in aorta-gonad-mesonephros and yolk sac of human embryos // Blood. V. 111. № 4. P. 2436–2443. https://doi.org/10.1182/blood-2007-07-099333
- Wilson A., Shehadeh L.A., Yu H., Webster K.A., 2010. Age-related molecular genetic changes of murine bone marrow mesenchymal stem cells // BMC Genomics. V. 11. Art. 229. https://doi.org/10.1186/1471-2164-11-229
- Wolf N.S., Bertoncello I., Jiang D., Priestley G., 1995. Developmental hematopoiesis from prenatal to young-adult life in the mouse model // Exp. Hematol. V. 23. № 2. P. 142–146.
- Wu C.H., Weng T.F., Li J.P., Wu K.H., 2024. Biology and therapeutic properties of mesenchymal stem cells in leukemia // Int. J. Mol. Sci. V. 25. № 5. Art. 2527. https://doi.org/10.3390/ijms25052527
- Wu K.H., Tsai C., Wu H.P., Sieber M., Peng C.T., Chao Y.H., 2013. Human application of ex vivo expanded umbilical cord-derived mesenchymal stem cells: Enhance hematopoiesis after cord blood transplantation // Cell Transplant. V. 22. № 11. P. 2041–2051. https://doi.org/10.3727/096368912X663533
- Wu Y., Aanei C.M., Kesr S., Picot T., Guyotat D., Campos Catafal L., 2017. Impaired expression of focal adhesion kinase in mesenchymal stromal cells from low-risk myelodysplastic syndrome patients // Front. Oncol. V. 7. Art. 164. https://doi.org/10.3389/fonc.2017.00164
- Wu Y., Yu J., Zhang L., Luo Q., Xiao J.W., et al., 2008. [Hematopoiesis support of mesenchymal stem cells in children with aplastic anemia] // Zhongguo Dang Dai Er Ke Za Zhi. V. 10. № 4. P. 455–459 (in Chinese).
- Xia C., Wang T., Cheng H., Dong Y., Weng Q., et al., 2020. Mesenchymal stem cells suppress leukemia via macrophage-mediated functional restoration of bone marrow microenvironment // Leukemia. V. 34. № 9. P. 2375–2383. https://doi.org/10.1038/s41375-020-0775-3
- Xiao Y., Jiang Z.J., Pang Y., Li L., Gao Y., et al., 2013. Efficacy and safety of mesenchymal stromal cell treatment from related donors for patients with refractory aplastic anemia // Cytotherapy. V. 15. № 7. P. 760–766. https://doi.org/10.1016/j.jcyt.2013.03.007
- Yang H.M., Cho M.R., Sung J.H., Yang S.J., Nam M.H., et al., 2011. The effect of human fetal liver-derived mesenchymal stem cells on CD34+ hematopoietic stem cell repopulation in NOD/Shi-scid/IL-2Rã(null) mice // Transplant. Proc. V. 43. № 5. P. 2004–2008. https://doi.org/10.1016/j.transproceed.2011.02.025
- Yehudai-Resheff S., Attias-Turgeman S., Sabbah R., Gabay T., Musallam R., et al., 2019. Abnormal morphological and functional nature of bone marrow stromal cells provides preferential support for survival of acute myeloid leukemia cells // Int. J. Cancer. V. 144. № 9. P. 2279–2289. https://doi.org/10.1002/ijc.32063
- Yi X., Chen F., Liu F., Peng Q., Li Y., et al., 2020. Comparative separation methods and biological characteristics of human placental and umbilical cord mesenchymal stem cells in serum-free culture conditions // Stem Cell Res. Ther. V. 11. № 1. Art. 183. https://doi.org/10.1186/s13287-020-01690-y
- Yu Y., Valderrama A.V., Han Z., Uzan G., Naserian S., Oberlin E., 2021. Human fetal liver MSCs are more effective than adult bone marrow MSCs for their immunosuppressive, immunomodulatory, and Foxp3+ T reg induction capacity // Stem Cell Res. Ther. V. 12. № 1. Art. 138. https://doi.org/10.1186/s13287-021-02176-1
- Zhang Y., Li C.D., Jiang X.X., Li H.L., Tang P.H., Mao N., 2004. Comparison of mesenchymal stem cells from human placenta and bone marrow // Chin. Med. J. (Engl). V. 117. № 6. P. 882–887.
- Zhang Y.Z., Zhao D.D., Han X.P., Jin H.J., Da W.M., Yu L., 2008. In vitro study of biological characteristics of mesenchymal stem cells in patients with low-risk myelodysplastic syndrome // Zhongguo Shi Yan Xue Ye Xue Za Zhi. V. 16. № 4. P. 813–818.
- Zhao M., Tao F., Venkatraman A., Li Z., Smith S.E., et al., 2019. N-cadherin-expressing bone and marrow stromal progenitor cells maintain reserve hematopoietic stem cells // Cell Rep. V. 26. № 3. P. 652–669.E6. https://doi.org/10.1016/j.celrep.2018.12.093
Supplementary files
