Фазовые равновесия в системе Li–V–O (аналитический обзор)
- Авторы: Нипан Г.Д.1, Бузанов Г.А.1
-
Учреждения:
- Институт общей и неорганической химии им. Н.С. Курнакова РАН
- Выпуск: Том 69, № 10 (2024)
- Страницы: 1432-1442
- Раздел: ФИЗИКО-ХИМИЧЕСКИЙ АНАЛИЗ НЕОРГАНИЧЕСКИХ СИСТЕМ
- URL: https://bakhtiniada.ru/0044-457X/article/view/281874
- DOI: https://doi.org/10.31857/S0044457X24100094
- EDN: https://elibrary.ru/JIERBL
- ID: 281874
Цитировать
Полный текст
Аннотация
С использованием метода топологического моделирования на основе фрагментарных экспериментальных данных о фазовых равновесиях и превращениях впервые построены P–T–x-фазовые диаграммы бинарных систем Li–V, Li–O и V–O, а также полная изотермическая концентрационная диаграмма системы Li–V–O, учитывающая образование ограниченных твердых растворов и присутствие насыщенного пара.
Полный текст
ВВЕДЕНИЕ
Публикации, посвященные свойствам ванадатов лития, исчисляются тысячами, однако отсутствует цельная картина фазовых равновесий в системе Li–V–O, несмотря на изменение в зависимости от температуры и парциального давления кислорода нестехиометрии Li : V : O кристаллических фаз и их физико-химических свойств.
Актуальная тема материалов с фазовым переходом (PCM – phase change materials), которые нашли широкое применение для преобразования солнечной энергии и накопления электрической энергии, рекуперации отработанного тепла, кондиционирования воздуха и регулирования температуры в зданиях, в телекоммуникационном и микропроцессорном оборудовании, для изолирующей одежды и биомедицинских систем, для изготовления контейнеров для транспортировки и хранения пищевых продуктов [1, 2], получила дальнейшее развитие в новом типе PCM, использующих переход между сильно коррелированными электронными состояниями (заряд, спин, орбиталь) кристаллической структуры [3]. В отличие от SL-PCM (solid-liquid PCM, плавление/затвердевание) [4] и SS-PCM (solid-solid PCM, твердофазное превращение) [5], подобные PCM позволяют осуществлять непосредственную установку в оборудование без утечки жидкости или нарушения однофазности. К новым PCM относится нестехиометрический ванадат лития LixVO2 (0.85 ≤ x ≤ 1.15) c ромбоэдрической пр. гр. Rm, который претерпевает при 490 K немагнитно-парамагнитный переход, резкое изменение удельного электрического сопротивления и структурное превращение с энтальпией, сравнимой с энтальпиями для SL-PCM [6].
Ванадат лития со структурой нормальной шпинели LiV2O4 (Fdm) – первый обнаруженный оксид, в котором систему тяжелых фермионов (квазичастицы, эффективная масса которых на 2–3 порядка больше массы электрона) образуют 3d-, а не 4f- и 5f-электроны [7], и их особенностью является геометрическое разупорядочение как спинов, так и зарядов [8, 9]. Обратимое литирование поликристаллов до состава Li2V2O4 [10] или нанесение в виде пленок на зерна LiNi0.5Co0.2Mn0.3O2 [11] позволяет использовать LiV2O4 в катодах литий-ионных аккумуляторов (ЛИА). Кроме того, интерес для ЛИА представляют полиморфные ванадиевые бронзы LixV2O5 (0 ≤ x ≤ 1; α → ε → β → γ → δ) с ромбической или моноклинной структурой в зависимости от содержания лития, ω-Li3V2O5 (Fmm) [12, 13] и LixV3O8 (1 ≤ x ≤ 4.8, P21/m) [14, 15].
Практически все кристаллические фазы, образующиеся в системе Li–V–O, представляют собой ограниченные твердые растворы, на гомогенность которых влияют не только температура и давление, но и фазы, находящиеся с ними в равновесии. Рассмотрим фазовые диаграммы тройной системы Li–V–O, начиная с граничных бинарных систем.
СИСТЕМА Li–V
В системе Li–V отсутствуют интерметаллиды и твердые растворы на основе Li (Imm) и V (Imm), образуется вырожденная эвтектика на основе лития, а расплавы Li и V не смешиваются [16]. Равновесные диаграммы T–x (температура–состав) для Li–V при собственном давлении P насыщенного пара (Li, Li2, V [17]) и избыточном давлении P = 1 атм (101 кПа), представленные в работе [16], можно рассматривать как T–x-проекцию без линии пара и T–x-изобарное сечение P–T–x-фазовой диаграммы Li–V. Модели P–T- и T–x-проекций (рис. 1) позволяют корректировать изобарические T–x-диаграммы (рис. 2). Координаты тройной точки Li (OLi, рис. 1а) определены с высокой точностью (453.7 K, 2.3 × 10–8 Па) [17]. Температура кипения (P = 101.325 кПа) литиевого расплава находится в интервале 1600–1620 K [18]. Давлению пара Li при сублимации (298–454 K [19]) и испарении (455–1500 K [20], 700–2075 K [21]) на P–T-проекции (рис. 1а) соответствуют линии 1 и 2. Увеличение температуры плавления Li с ростом давления [22] представлено линией 3. Тройная точка (2201 K, 3.64 Па), температура кипения (3694 K) и линия сублимации 4 (298–2201 K) для V приведены на P–T- и T–x-проекциях (рис. 1а, 1б, OV) по данным [23]. Линия испарения 5 построена на основе данных работы [21], в которой область аппроксимации 1800–4375 K включает интервал 2201–3700 K для [23]. Плавление V представлено вертикалью 6, поскольку экспериментально зависимость температуры плавления от давления не установлена. Эвтектическому E (SVL2SLiG) и монотектическому M (SVL1L2G) равновесиям (SV, SLi, L1, L2 – кристаллические фазы и расплавы на основе ванадия и лития; G – пар) на P–T-проекции отвечают точки E и М, а на T–x-проекции – четыре точки составов фаз в нонвариантных равновесиях, объединенные нодой (рис. 1б). Вырожденные моновариантные линии L2SLiG и SVL1G связывают на P–T-проекции нонвариантные точки E и М с тройными точками OLi и OV, чему на T–x-проекции соответствуют пучки из трех линий состава, объединяющие ноды с тройными точками. Моновариантное равновесие SVL2G объединяет два нонвариантных равновесия. Линия совместной сублимации SVSLiG на P–T-проекции (линии солидуса и пара на T–x-проекции, уходящие вниз) практически совпадает с линией 1 сублимации лития, а линия L1L2G (на T–x-проекции линии ликвидуса и пара, уходящие вверх) практически совпадает с линией 5 испарения ванадия. Кроме того, присутствуют моноварианты совместного плавления ванадия с литием SVL2SL и плавления ванадия с расслаиванием SVL1L2. Для пояснения P–T–x-диаграммы и сравнения с результатами работы [16] на рис. 2а, 2б приведены модели изобарных T–x-сечений для интервала POLi < P < PM и при давлении 101 кПа. Диаграмма без учета паровой фазы с температурами вырожденной эвтектики 453.7 K и монотектики 2183 K [16] соответствует T–x-сечению при давлении 101 кПа (рис. 2), но диаграмму для 101 кПа, приведенную в [16], нельзя назвать корректной. Давление пара в тройной точке ванадия и над расплавом лития при 615 K (342°C) значительно ниже 101 кПа, и равновесие ванадий–пар SVG при 101 кПа не может реализоваться [16].
Рис. 1. P–T- (а) и T–x-проекции (б) P–T–x-фазовой диаграммы Li–V.
Рис. 2. Изобарные T–x-сечения P–T–x-фазовой диаграммы Li–V: интервал POLi < P < PM (а) и P = 101 кПа (б).
СИСТЕМА Li–O
В системе Li–O существуют стабильные оксиды Li2O (Fmm) и Li2O2 (P63/mmc). Кристаллическая фаза Li2O конгруэнтно плавится, образует вырожденную эвтектику с литием и появляется при перитектическом плавлении Li2O2 [24]. Расплав Li2O конгруэнтно испаряется [24]. В паре присутствуют Li, Li2, O2, Li2O, LiO, Li3O и Li2O2 [17]. О конгруэнтной сублимации Li2O свидетельствует наличие линии минимального давления для кристаллического Li2O [17] по отношению к линиям моновариантных равновесий SLiSLi2OG и SLi2OSLi2O2G (SLi2O и SLi2O2 – кристаллические фазы на основе Li2O и Li2O2) [25]. Экспериментальные данные по давлению пара над Li [19–21], Li2O [17] и Li2O2 [17] позволяют смоделировать P–T-диаграмму и при использовании изобарной T–x-диаграммы (101 кПа) [24] представить в виде проекций и изобарных сечений P–T–x-фазовую диаграмму системы Li–O (рис. 3 и 4). Координаты тройной точки OLi и точки кипения при 101 кПа, линии сублимации 1, испарения 2 и плавления 3 для Li на P–T-проекции (рис. 3а) такие же, как на рис. 1а. Тройная точка кислорода (54.36 K, 146 Па) [26] не отмечена. Эвтектическому E (GSLiLSLi2O) и перитектическому P (SLi2OSLi2O2LG) равновесиям на P–T-проекции соответствуют точки E и P. Кроме того, присутствуют точки условно нонвариантных равновесий N1, N2 и N3, в которых линии конгруэнтного испарения L = G, сублимации SLi2O = G и плавления SLi2O = L касаются трехфазной моноварианты GLSLi2O, в результате чего последовательно изменяется порядок фаз GLSLi2O → LGSLi2O → LSLi2OG → SLi2OLG (рис. 3а и поясняющая вырезка). На T–x-проекции линия пара G, обогащенного литием, пересекается с линиями ликвидуса L и солидуса SLi2O, которые после прохождения через температурный максимум пересекаются между собой, и из точек пересечения линий составов исходят штриховые линии конгруэнтных превращений (рис. 3б и вырезка). Как и на рис. 1, четыре точки составов фаз в нонвариантных равновесиях E и P объединены нодами (рис. 3 б), и вырожденная моновариантная линии GSLiL связывает на P–T-проекции нонвариантную точку E с тройной точкой OLi (рис. 3а), чему на T–x-проекции соответствует пучок из трех линий состава, объединяющий ноду с тройной точкой. Моновариантное равновесие GLSLi2O (SLi2OLG) объединяет нонвариантные равновесия E (GSLiLSLi2O) и P (SLi2OSLi2O2LG). Линия совместной сублимации GSLiSLi2O на P–T-проекции (линии солидуса и пара на T–x-проекции, уходящие вниз) практически совпадает с линией 1 сублимации лития. Область дивариантного равновесия SLi2O2–кислород заключена на P–T-проекции между моновариантами SLi2OSLi2O2G и SLi2O2LG, а на T–x-проекции представлена двумя линиями солидуса и двумя линиям пара, отходящими вниз от ноды P (SLi2OSLi2O2LG). На рис. 3 также отмечены моноварианты совместного плавления оксида лития с литием SLiLSLi2O и с пероксидом SLi2OSLi2O2L при изменении давления.
Рис. 3. P–T- (а) и T–x-проекции (б) P–T–x-фазовой диаграммы Li–O.
Рис. 4. Изобарные T–x-сечения P–T–x-фазовой диаграммы Li–O: интервалы POLi < P < PN1 (а), PN1 < P < PN2 (б), PN2 < P < PN3 (в) и PN3 < P < PP (г).
Взаимодействие конгруэнтных процессов проанализировано с помощью моделей изобарных T–x-сечений (рис. 4). Сечение на рис. 4а реализуется при давлениях POLi < P < PN1, для которых наблюдается когруэнтная сублимация SLi2O. В интервале PN1 < P < PN2 (рис. 4б) помимо конгруэнтной сублимации происходит конгруэнтное испарение расплава Li2O. При повышении давления до PN2 < P < PN3 (рис. 4в) конгруэнтная сублимация PN2 < P < PN3 (рис. 4в) прекращается. T–x-сечение на рис. 4 г соответствует интервалу PN3 < P < PP, в котором происходит конгруэнтное плавление SLi2O и конгруэнтное испарение расплава. В этот интервал давлений попадает изобара P = 101 кПа, и представленное T–x-сечение (рис. 4 г) соответствует расчетной T–x-диаграмме при атмосферном давлении с температурами вырожденной эвтектики Li c Li2O 453.6 K, перитектического плавления Li2O2 613.2 K, конгруэнтного плавления Li2O 1711 K и конгруэнтного испарения расплава Li2O 2673 K [24].
СИСТЕМА V–O
На P–T–x-фазовой диаграмме V–O стабильные кристаллические фазы обозначены в соответствии с увеличением содержания кислорода. Для твердых растворов на их основе оценены интервалы кислородной нестехиометрии: V–SV (Imm, 0–17 ат. % O), V8O–Sα′ (8.1–11.7 ат. % O), V4O–Sβ (I41/mmm, 7.9–28.5 ат. % O), V16O3–Sβ′ (I41/mmm, 13–22 ат. % O), V7O3–Sγ (C2/m, 30–35 ат. % O), VO–Sδ (Fmm, 42–55 ат. % O), V4O5–Sδ′ (I4/amd, 55–56 ат. % O), V2O3–Sε (Rc, 59–62 ат. % O), V3O5–Sη (I2/c), V4O7–Sθ1 (P), V5O9–Sθ2 (P), V6O11–Sθ3 (P), V7O13–Sθ4 (P), V8O15 – Sθ5 (P), VO2–Sι (P42/mnm), V6O13–Sϰ (C2/m), V3O7–Sω (C2/c) и V2O5–Sλ (Pmmm) [27–30]. Низкотемпературные стабильные полиморфные модификации и метастабильные кристаллические фазы не рассматриваются [27, 28]. Молекулярный состав паровой фазы системы V–O столь же разнообразен, и в ней присутствуют V, VO, VO2, V2O4, V4O8, V4O10, V6O12, V6O14 и O2 [17]. На рис. 5а представлена P–T-проекция P–T–x-фазовой диаграммы V–O, на которой фигуративными точками отмечены 16 нонвариантных равновесий с участием пара, систематизированных в табл. 1.
Рис. 5. P–T- (а) и T–x-проекции (б) P–T–x-фазовой диаграммы V–O.
Таблица 1. Нонвариантные и моновариантные равновесия в системе V–O
Нонвариантные равновесия | Моновариантные равновесия с паром | Обозначения моновариант |
OV(VLG) | LG, VG | 1 – OV , 2 – OV |
P1(SVSβLG) | SVSβG, SVLG, SβLG | 3 – P1, OV – P1, P1 – E1 |
E1(SβGLSδ) | SβGSδ, SβGL, GLSδ | E1 – P2, P1 – E1, E1 – N1 |
P2(SβSγGSδ) | SβGSδ, SβSγG, SγGSδ | E1 – P2, 4 – P2, 5 – P2 |
E2(GSδLSε) | GSδSε, GSδL, GLSε | P3 – E2, N1 – E2, E2 – N2 |
P3(GSδSδ´Sε) | GSδSε, GSδSδ´, GSδ´Sε | P3 – E2, 6 – P3, 7 – P3 |
P4(SεSηLG) | SεSηG, SεLG, SηLG | 8 – P4, N2 – P4, P4 – P5 |
P5(SηSθ1LG) | SηSθ1G, SηLG, Sθ1LG | 9 – P5, P4 – P5, P5 – P6 |
P6(Sθ1Sθ2LG) | Sθ1Sθ2G, Sθ1LG, Sθ2LG | 10 – P6, P5 – P6, P6 – P7 |
P7(Sθ2Sθ3LG) | Sθ2Sθ3G, Sθ2LG, Sθ3LG | 11 – P7, P6 – P7, P7 – P8 |
P8(Sθ3SιLG) | Sθ3SιG, Sθ3LG, SιLG | P8 – P9, P7 – P8, P8 – P11 |
P9(Sθ3Sθ4SιG) | Sθ3SιG, Sθ3Sθ4G, Sθ4SιG | P8 – P9, 12 – P9, P9 – P10 |
P10(Sθ4Sθ5SιG) | Sθ4SιG, Sθ4Sθ5G, Sθ5SιG | P9 – P10, 13 – P10, 14 – P10 |
P11(SιSϰLG) | SιSϰG, SιLG, SϰLG | 15 – P11, P8 – P11, P11 – P12 |
P12(SϰSωLG) | SϰSωG, SϰLG, SωLG | 16 – P12, P11 – P12, P12 – E3 |
E3(SωLSλG) | Sω SλG, SωLG, LSλG | 17 – E3, P12 – E3, E3 – N3 |
OV – тройная точка ванадия, E1–E3 – эвтектики, P1–P12 – перитектики, N1–N3 – условно нонвариантные точки, соединенные линиями моновариантных равновесий. Эвтектическим и перитектическим равновесиям на T-проекции (рис. 5б) соответствуют ноды, связывающие составы четырех фаз. Моновариантные трехфазные равновесия на T–x-проекции представлены тремя линиями составов (линии наибольшей толщины S – солидус или сольвус, средние L – ликвидус, тонкие G – пар). Линии, отвечающие равновесиям между конденсированными фазами SSL или SSS, выходящие из нонвариантных точек E и P, для упрощения P–T–x-фазовой диаграммы не приведены. Моновариантные равновесия с участием пара указаны в табл. 1. Штриховые линии, касающиеся моновариант на P–T-проекции (рис. 5а) или пересечений линий состава на T–x-проекции (рис. 5б) в точках N1 (~2050 K [31]) и N3 (~955 K [31]) отвечают конгруэнтному плавлению Sδ (VO) и Sλ (V2O5). Точка N2 (~2265 K [31]) в действительности представляет собой три точки для Sε (V2O3) подобно тому, как это происходит в случае Li2O (рис. 3), из которых исходят линии конгруэнтного испарения L = G, сублимации Sε = G и плавления Sε = L. В результате на моноварианте, связывающей E2 и P4, происходит изменение порядка фаз GLSε → LGSε → LSεG → SεLG. Парциальное давление кислорода для моновариантных равновесий системы V–O изменяется более чем на сто порядков [31, 32], поэтому приведены моноварианты общего давления, которые из-за противоречивости экспериментальных данных могут быть сдвинуты по давлению на порядок [31–35].
СИСТЕМА Li–V–O
Концентрационные диаграммы системы Li–V–O представлены фрагментарно и без учета образования ограниченных твердых растворов на основе оксидов ванадия [36–40]. В системе до 850 K существуют кристаллические Li3VO4 (Pmn21), LiVO2 (Rm), LiVO3 (С12/с1), LiV2O4 (Fdm), LiV2O5 (Pnma), LiV3O8 (P121/m1) и фазы LixV6nO15n–m (С121/m1 и P121/m1), близкие к бронзам LixV2O5 (0 < x ≤ 1). На рис. 6 представлена изотермическая субсолидусная концентрационная диаграмма Li–V–O. Фигуративные точки S1, S2, S3 и S4 соответствуют Li3VO4, LiVO2, LiVO3 и LiV2O4. Составы LiV2O5 и LiV3O8 принадлежат ограниченным твердым растворам S5 и S6. Фазы LixV6nO15n–m рассматриваются как твердый раствор S7 с полиморфным превращением [37], область которого на диаграмме показана черным цветом. Все двухфазные области с участием твердых растворов изображены на диаграмме серым цветом. Штриховые линии показывают изменение триангуляции в системы Li–V–O при кристаллизации Li2O2 ниже 620 K, когда вместо равновесий SLi2OS1G(O2) и S1S3G(O2) возникают равновесия SLi2OSLi2O2S1, SLi2O2S1S3 и SLi2O2S3G(O2). Для пояснения приведен увеличенный фрагмент диаграммы Li–V–O в интервале от 50 до 71.4 ат. % O (рис. 7). Сведения о фазовых равновесиях с участием расплава отрывочны. Максимальные температуры плавления для S1, S2, S3 и S4, имеющих области нестехиометрии [41–44], могут не соответствовать стехиометрическим составам Li3VO4, LiVO2, LiVO3 и LiV2O4. Фаза S1 (Li3VO4) плавится конгруэнтно при 1425 K [45] и образует эвтектики (22.9 ат. % Li, 18.8 ат. % V, 58.3 ат. % O, T = 865 K [45] и 27.5 ат. % Li, 19.5 ат. % V, 53 ат. % O, T = 1223 K [46]) с фазой S3 (LiVO3), конгруэнтно плавящейся при 895 K [47], и S4 (LiV2O4), инкогруэнтно плавящейся при 1313 K с образованием Sε (V2O3) [46]. Фаза S3 (LiVO3) участвует в эвтектическом равновесии (13.9 ат. % Li, 22.6 ат. % V, 63.5 ат. % O, T = 823 K) с S6, инконгруэнтно плавящейся при 858 K с образованием Sλ (V2O5) [47]. Фаза S7 с максимальной температурой плавления (Tmax) 993 K участвует в эвтектических равновесиях (8.1 ат. % Li, 26.3 ат. % V, 65.6 ат. % O, T = 945 K и 1.1 ат. % Li, 28.3 ат. % V, 70.6 ат. % O, T = 970 K) с фазами S5 (LiV2O5, Tmax = 1045 K) и Sλ (V2O5) [48]. Вероятно, при 875 K наблюдается тройная эвтектика с участием S3 (LiVO3, Tmax = 891 K) [48]. Над смесями бронз S5S7 и S7Sλ измерено парциальное давление кислорода ((1.5–4) × 104 Па) в интервале температур 740–900 K [48]. Моноварианты четырехфазных равновесий SSSG системы Li–V–O с участием двух оксидов ванадия совпадают с соответствующими моновариантами SSG системы V–O подобно тому, как это происходит для систем Li–Mn–O и Mn–O [49].
Рис. 6. Изотермическая концентрационная диаграмма Li–V–O.
Рис. 7. Фрагмент изотермической концентрационной диаграммы Li–V–O (50 ат. % ≤ O ≤ 71.4 ат. %).
ЗАКЛЮЧЕНИЕ
На основе Курнаковских принципов непрерывности и однозначного соответствия при использовании фрагментарных экспериментальных данных проведен топологический анализ фазовых равновесий в системе Li– V–O. Наиболее подробно физико-химический топологический метод описан в классической монографии [50]. В представленном исследовании использовано пространство давление–температура–состав с гомогенными замкнутыми объемами кристаллических фаз, расплава и пара, которые удобно представить как полиэдры. Для бинарных систем в трехмерном пространстве P–T–x-поверхности двух полиэдров, обращенные друг к другу, представляют собой двухфазное равновесие, ребра трех полиэдров, принадлежащие единой поверхности, соответствуют трехфазному равновесию, а вершины четырех полиэдров на одной линии ортогональной плоскости P–T отвечают четырехфазному нонвариантному равновесию.
Впервые для бинарных систем Li–V, Li–O и V–O построены P–T–x-фазовые диаграммы и ключевые изобарные T–x-сечения. Впервые построена непротиворечивая изотермическая концентрационная диаграмма системы Li–V–O с участием твердых растворов при изменяющемся давлении насыщенного пара.
ФИНАНСИРОВАНИЕ РАБОТЫ
Исследование выполнено при финансовой поддержке Российского научного фонда (грант № 23-23-00576).
КОНФЛИКТ ИНТЕРЕСОВ
Авторы заявляют об отсутствии конфликта интересов.
Об авторах
Г. Д. Нипан
Институт общей и неорганической химии им. Н.С. Курнакова РАН
Автор, ответственный за переписку.
Email: nipan@igic.ras.ru
Россия, Ленинский пр-т, 31, Москва, 119071
Г. А. Бузанов
Институт общей и неорганической химии им. Н.С. Курнакова РАН
Email: nipan@igic.ras.ru
Россия, Ленинский пр-т, 31, Москва, 119071
Список литературы
- Fallahi A., Guldentops G., Tao M. et al. // Appl. Therm. Eng. 2017. V. 127. P. 1427. https://doi.org/10.1016/j.applthermaleng.2017.08.161
- Zare M., Mikkonen K.S. // Adv. Funct. Mater. 2023. V. 33. № 12. P. 2213455. https://doi.org/10.1002/adfm.202213455
- Kato K., Lee J., Fujita A. et al. // J. Alloys Compd. 2018. V. 751. P. 241. https://doi.org/10.1016/j.jallcom.2018.04.094
- Li X., Liu Y., Xu Y. et al. // Acc. Mater. Res. 2023. V. 4 № 6. P. 484. https://doi.org/10.1021/accountsmr.2c00251
- Huang L., Yang Y., Yuan D., Cai X. // J. Energ. Stor. 2021. V. 36. P. 102343. https://doi.org/10.1016/j.est.2021.10234316
- Kinemuchi Y., Masuda Y., Ozaki K., Fujita A. // J. Alloys Compd. 2021. V. 882. P. 160741. https://doi.org/10.1016/j.jallcom.2021.160741
- Kondo S., Johnston D.C., Swenson C.A. et al. // Phys. Rev. Lett. 1997. V. 78. № 19. P. 3729. https://doi.org/10.1103/PhysRevLett.78.3729
- Schweizer T.F., Niemann U., Que X. et al. // APL Mater. 2023. V. 11. P. 021109. https://doi.org/10.1063/5.0140576
- Shimizu Y., Takeda H., Tanaka M. et al. // Nat. Commun. 2012. V. 3. № 1. P. 981. https://doi.org/10.1038/ncomms1979
- Li G., Sakuma K., Ikuta H. et al. // Denki Kagaku. 1996. V. 64. № 3. P. 202.
- Lu Y., Zheng X., Wang J. et al. // Adv. Mater. Inter. 2019. V. 6. P. 1901368. https://doi.org /10.1002/admi.201901368
- Christensen C.K., Sørensen D.R., Yvam J., Ransbǽk D.B. // Chem. Mater. 2019. V. 31. № 2. P. 512. https://doi.org/10.1021/acs.chemmater.8b04558
- Divya M.L., Aravindan V. // Chem. Asian J. 2019. V. 14. № 24. P. 4665. https://doi.org/10.1002/asia.20190094617
- Sarkar S., Bhownik A., Bharadwaj M.D., Mitra S. // J. Electrochem. Soc. 2014. V. 161. № 1. P. A14. https://doi.org/10.1149/2.006401jes
- Jouanneau S., Verbaere A., Guyomard D. // J. Solid State Chem. 2005. V. 178. P. 22. https://doi.org/110.1016/j.jssc.2004.10.009
- Smith J.F., Lee K.J. // Bull. Alloy Phase Diagrams. 1988. V. 9. № 4. P. 474. https://doi.org/10.1007/BF02881870
- Казенас Е.К., Цветков Ю.В. Термодинамика испарения оксидов. М., 2015. 480 с.
- Zhang Y., Evans J.R.G., Yang S. // J. Chem. Eng. Data. 2011. V. 56. № 2. P. 328. https://doi.org/10.1021/je1011086
- Alcock C.B., Itkin V.P., Horrigan M.K. // Can. Metall. Q. 1984. V. 23. № 3. P. 309. https://doi.org/10.1179/cmq.1984.23.3.309
- Kondo M., Nakajima Y. // Fusion Eng. Des. 2013. V. 88. № 9–10. P. 2556. https://doi.org/10.1016/j.fusengdes.2013.05.049
- Mondal B., Mukherjee T., Finch N.W. et al. // Materials. 2023. V. 16. № 1. P. 50. https://doi.org/10.3390/ma16010050
- Тонков Е.Ю. Фазовые диаграммы элементов при высоком давлении. М.: Наука, 1979. 192 с.
- Arblaster J.W. // J. Phase Equilib. Diffus. 2017. V. 38. № 1. P. 51. https://doi.org/10.1007/s11669-016-0514-718
- Chang K., Hallstedt B. // CALPHAD. 2011. V. 35. № 2. P. 160. https://doi.org/10.1016/j.calphad.2011.02.003
- Зломанов В.П., Новоселова А.В. P–T–x-диаграммы состояния систем металл–халькоген. М.: Наука, 1987. 208 с.
- Сычев В.В., Вассерман А.А., Козлов А.Д. и др. Термодинамические свойства кислорода: ГСССР. М.: Изд-во стандартов, 1981. 304 с.
- Wriedt H.A. // Bull. Alloy Phase Diagrams. 1989. V. 10. № 3. P. 271. https://doi.org/10.1007/BF02877512
- Massalski T.B., Okamoto H., Subramanian P.R., Kacprzak L. // Binary Alloy Phase Diagrams. ASM International. Materials Park. OH. 1990.
- Kang Y.B. // J. Eur. Ceram. Soc. 2012. V. 32. № 12. P. 3187. https://doi.org/10.101016/j.jeurceramsoc.2012.04.045
- Okamoto H. // J. Phase Equilib. Diffus. 2020. V. 41. № 5. P. 722. https://doi.org/10.1007/s11669-020-00839-9
- Yang Y., Mao H., Selleby M. // CALPHAD. 2015. V. 51. P. 144. https://doi.org/10.1016/j.calphad.2015.08.003
- Cao Z., Li S., Xie W. et al. // CALPHAD. 2015. V. 51. P. 241. https://doi.org/10.1016/j.calphad.2015.10.003
- Banchorndhevakul W., Matsui T., Naito K. // J. Nucl. Sci. Tech. 1986. V. 23. № 10. P. 873. https://doi.org/10.1080/18811248.1986.973507119
- Banchorndhevakul W., Matsui T., Naito K. // J. Nucl. Sci. Technol. 1986. V. 23. № 7. P. 602. https://doi.org/10.1080/18811248.1986.9735028
- Banchorndhevakul W., Matsui T., Naito K. // Thermochim. Acta. 1985. V. 88. № 1. P. 301. https://doi.org/10.1016/0040-6031(85)85446-0
- Фотиев А.А., Волков В.Л., Капусткин В.К. Оксидные ванадиевые бронзы. М.: Наука, 1978. 176 с.
- Takayama-Muromachi E., Kato K. // J. Solid State Chem. 1987. V. 71. № 1. P. 274. https://doi.org/10.1016/0022-4596(87)90167-8
- Deublein G., Huggins R.A. // J. Electrochem. Soc. 1989. V. 136. № 8. P. 2234. https://doi.org/10.1149/1.2097275
- Ito Y., Maruyama T., Yoshimura M., Saito Y. // J. Mater. Sci. Lett. 1989. V. 8. № 4. P. 456. https://doi.org/10.1007/BF00720705
- Das S., Ma X., Zong X. et al. // Phys. Rev. B. 2006. V. 74. P. 184417. https://doi.org/10.1103/PhysRevB.74.184417
- Sun Y., Li C., Yang C. et al. // Adv. Sci. 2022. V. 9. № 3. P. 2103493. https://doi.org/10.1002/advs.20210349320
- Tian W., Chisholm M.F., Khalifan P.G. et al. // Mater. Res. Bull. 2004. V. 39. № 9. P. 1319. https://doi.org/10.1016/j.materresbull.2004.03.024
- Jadidi Z., Yang J.H., Chen T. et al. // J. Mater. Chem. 2023. V. 11. № 33. P. 17728. https://doi.org/10.1039/D3TA02475J
- Meng L., Guo R., Li F. et al. // J. Mater. Sci. 2020. V. 55. № 13. P. 5522. https://doi.org/10.1007/s10853-020-04388-x
- Reisman A., Mineo J. // J. Phys. Chem. 1962. V. 66. № 6. P. 1181. https://doi.org/10.1021/j100812a048
- Das S., Zong X., Niazi A. et al. // Phys. Rev. B. 2007. V. 76. P. 054418. https://doi.org/10.1103/PhysRevB.76.054418
- Фотиев А.А., Глазырин М.И., Баусова Н.В. // Журн. неорган. химии. 1968. Т. 13. № 7. С. 1936.
- Волков В.Л., Сурат Л.Л., Фотиев А.А. // Химия и технология ванадиевых соединений. Пермь, 1974. С. 273.
- Buzanov G.A., Nipan G.D., Zhizhin K.Yu., Kuznetsov N.T. // Russ. J. Inorg. Chem. 2017. V. 62. P. 551. https://doi.org/10.1134/S0036023617050059
- Райнз Ф. Диаграммы фазового равновесия в металлургии. М.: Металлургия, 1960. 376 с.
Дополнительные файлы










