Framework tetrarhodanomercurate complexes of Mn(II), Fe(II), Cd(II) with nicotinamide: synthesis and crystal structure
- Authors: Barantsev D.A.1, Pervukhina N.V.2, Kuratieva N.V.2, Cherkasova T.G.1
-
Affiliations:
- Kuzbass State Technical University named after T.F. Gorbachev
- Nikolaev Institute of Inorganic Chemistry of SB RAS (NIIC SB RAS)
- Issue: Vol 70, No 8 (2025)
- Pages: 1046-1050
- Section: КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ
- URL: https://bakhtiniada.ru/0044-457X/article/view/308593
- DOI: https://doi.org/10.31857/S0044457X25080087
- EDN: https://elibrary.ru/jjqjqb
- ID: 308593
Cite item
Abstract
New bimetallic complexes of the composition [MHg(C6H6N2O)2 (SCN)4] have been synthesized, where M = Mn (I), Fe (II), Cd (III); C6H6N2O is nicotinamide (NA). The compounds were obtained from aqueous solutions and studied by CHNS/O analysis, IR spectroscopy, inductively coupled plasma optical emission spectrometry (ICP-OES) and X-ray diffraction analysis (XRD). Compounds I–III are isostructural and crystallize in the monoclinic syngony (space group C2/c). The coordination environment of the M atom is formed by two donor nitrogen atoms of two monodentately coordinated NA and four nitrogen atoms of the SCN groups, which form bridges between the M2+ and Hg2+ ions, connecting them into a three-dimensional framework. Hg2+ ions have a tetrahedral coordination environment consisting of four S atoms of four SCN groups.
Keywords
About the authors
D. A. Barantsev
Kuzbass State Technical University named after T.F. Gorbachev
Email: ctg.htnv@kuzstu.ru
Kemerovo, 650000 Russia
N. V. Pervukhina
Nikolaev Institute of Inorganic Chemistry of SB RAS (NIIC SB RAS)
Email: ctg.htnv@kuzstu.ru
Novosibirsk, 630092 Russia
N. V. Kuratieva
Nikolaev Institute of Inorganic Chemistry of SB RAS (NIIC SB RAS)
Email: ctg.htnv@kuzstu.ru
Novosibirsk, 630092 Russia
T. G. Cherkasova
Kuzbass State Technical University named after T.F. Gorbachev
Author for correspondence.
Email: ctg.htnv@kuzstu.ru
Kemerovo, 650000 Russia
References
- Li S., Li P., Tian Y. et al. // Bioorg. Chem. 2024. V. 153. P. 107974. https://doi.org/10.1016/j.bioorg.2024.107974
- Song Y.H., Bian O., Wang F. et al. // Coord. Chem. Rev. 2025. V. 524. P. 216299. https://doi.org/10.1016/j.ccr.2024.216299
- Zhou N., Guo X., Shao X. // J. Lumin. 2022. V. 251. P. 119222. https://doi.org/10.1016/j.jlumin.2022.119222
- Bregier-Jarzebowska R., Hoffmann S.K., Łomozik L. et al. // Polyhedron. 2019. V. 173. P. 114137. https://doi.org/10.1016/j.poly.2019.114137
- Yohan R.K., Jagannathan M., Sivalingam G. // J. Ind. Eng. Chem. 2025. V. 145. P. 234. https://doi.org/10.1016/j.jiec.2024.12.076
- Ahmad I., Ansari F.A., Siddiqi W.A. et al. // Energy Convers. Storage Appl. 2023. P. 475. https://doi.org/10.1016/B978-0-323-91206-8. 00023-6
- Juris A., Balzani V., Barigelletti F. et al. // Coord. Chem. Rev. 1988. V. 84. P. 85. https://doi.org/10.1016/0010-8545(88)80032-8
- Auria M., Frenna V., Monari M. et al. // Tetrahedron Lett. 2015. V. 56. № 47. P. 6598. https://doi.org/10.1016/j.tetlet.2015.10.030
- Ohkoshi S., Tokoro H. // Acc. Chem. Res. 2012. V. 45. № 10. P. 1749. https://doi.org/10.1021/ar300068k
- Chunxue Y., He X., Xutang T. // Inorg. Chem. Commun. 2017. V. 86. P. 145. https://doi.org/10.1016/j.inoche.2017.10.009
- Pramanik A., Das P. // Polyhedron. 2010. V. 29. P. 2999. https://doi.org/10.1016/j.poly.2010.08.004
- Chand B.G., Ray U.S., Mostafa G. et al. // Inorg. Chim. Acta. 2005. V. 358. P. 1927. https://doi.org/10.1016/j.ica.2004.12.046
- Du H.J., Wang C.H., Li Y. et al. // Inorg. Chim. Acta. 2015. V. 430. P. 46. http://dx.doi.org/10.1016/j.ica.2015.02.024
- Jian F.F., Xiao H.L., Liu F.Q. // J. Solid State Chem. 2006. V. 179. P. 3695. http://dx.doi.org/10.1016/j.jssc.2006.08.001
- Sun W., Luo L., Feng Y. et al. // Angew. Chem. Int. Ed. 2019. V. 59. P. 9914. http://dx.doi.org/10.1002/anie.201908712
- Weil M., Häuslera T. // Acta Crystallogr., Sect. E: Struct. Rep. Online. 2014. V. 70. P. 48. http://dx.doi.org/10.1107/S1600536814009532
- Zhaoxun L., Ning Z., Fengxia Y. et al. // Z. Kristallogr. NCS. 2011. V. 226. P. 289. https://doi.org/10.1524/ncrs.2011.0128
- Chunyan L., Fenghua C., Heng Z. et al. // Spectrochim. Acta, Part A. 2015. V. 134. P. 367. http://dx.doi.org/10.1016/j.saa.2014.06.080
- Al-Noor T.H., Aziz M.R., Al-Jeboori A.T. // J. Chem. Pharm. Res. 2014. V. 6. P. 1225.
- Садиков Г.Г. Кокшарова Т.В., Анцышкина А.С. и др. // Кристаллография. 2008. Т. 53. № 4. С. 668.
- Кокшарова Т.В., Садиков Г.Г., Анцышкина А.С. и др. // Журн. неорган. химии. 2006. Т. 51. № 6. С. 966.
- Kozlevcar B., Leban I., Turel I. et al. // Polyhedron. 1999. V. 18. P. 755. https://doi.org/10.1016/s0277-5387(98)00350-7
- Hokelek T., Süzen Y., Tercan B. et al. // Acta Crystallogr., Sect. E: Struct. Rep. Online. 2010. V. E66. P. m807. https://doi.org/10.1107/S1600536810022415
- Gör K., Kürkçüoğlu G.S., Yeşilel O.Z. et al. // J. Mol. Struct. 2014. V. 1060. P. 166. http://dx.doi.org/10.1016/j.molstruc.2013.12.024
- Bruker AXS Inc., APEX2 (Version 1.08), SAINT (Version 7.03), and SADABS (Version 2.11). Bruker Advanced X-ray Solutions, Madison, Wisconsin, USA, 2004.
- Sheldrick G.M. // Acta Crystallogr. 2015. V. C71. P. 3. https://doi.org/10.1107/S2053229614024218
- Химия псевдогалогенидов / Под ред. Голуба А.М., Келера Х., Скопенко В.В. Киев: Вища шк., 1971. 360 с.
- Machura B., Switlicka A., Mroziński J. et al. // Polyhedron. 2010. V. 29. P. 2157. http://dx.doi.org/10.1016/j.poly.2010.04.018
- Machura B., Świtlicka A., Mroziński J. et al. // J. Solid State Chem. 2013. V. 197. P. 218. http://dx.doi.org/10.1016/j.jssc.2012.08.041
- Cao T., Meng S., Xu Z. et al. // J. Solid State Chem. 2022. V. 315. P. 123455. http://dx.doi.org/10.1016/j.jssc.2022.123455
- Dziewulska-Kuaczkowska A., Mazur L., Ferenc W. // J. Therm. Anal. Calorim. 2009. V. 96. P. 255. http://dx.doi.org/10.1007/s10973-008-9851-z
- Yurdakul O., Kose D.A. // Hittite J. Sci. Eng. 2014. V. 1. P. 51. https://doi.org/10.17350/HJSE19030000008
- Bayarı S., Ataç A., Yurdakul S. // J. Mol. Struct. 2003. V. 655. P. 163. http://dx.doi.org/10.1016/S0022-2860(03)00256-4
- Анцышкина А.С., Садиков Г.Г., Кокшарова Т.В. и др. / Журн. неорган. химии. 2006. Т. 51. № 10. С. 1671.
- Lawal A., Obaleye J. A., Adediji J. F. et al. // Int. J. Chem. Kinet. Mater. Environ. Res. 2014. V. 18. P. 205. http://dx.doi.org/10.4314/jasem.v18i2.8
- Gör K., Kürkçüoğlu G.S., Yeşilel O.Z. et al. // J. Mol. Struct. 2014. V. 1060. P. 166. http://dx.doi.org/10.1016/j.molstruc.2013.12.024
- Черкасова Т.Г., Первухина Н.В., Куратьева Н.В. и др. // Журн. неорган. химии. 2019. Т. 64. № 4. С. 365.
- Авдеева В.В., Малинина Е.А., Жижин К.Ю., Кузнецов Н.Т. // Журн. неорган. химии. 2020. Т. 65. № 4. С. 495.
Supplementary files
