Binuclear Silver(I) Pyrazolate Complexes with Pyrazolylpyridine Derivatives: Association via Intramolecular Hydrogen Bonds and Ag···Ag Contacts
- Authors: Yakovlev G.B.1, Smol'yakov A.F.1, Filippov O.A.1, Titov A.A.1, Shubina E.S.1
-
Affiliations:
- Nesmeyanov Institute of Organoelement Compounds
- Issue: Vol 70, No 8 (2025)
- Pages: 1038-1045
- Section: КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ
- URL: https://bakhtiniada.ru/0044-457X/article/view/308592
- DOI: https://doi.org/10.31857/S0044457X25080071
- EDN: https://elibrary.ru/jjpxgq
- ID: 308592
Cite item
Abstract
Cyclic trinuclear silver(I) complex, [AgPz]₃ (Pz = 3,5-bis(trifluoromethyl)pyrazolate), serves as a versatile platform for interaction with N^N-donor chelating aromatic ligands. In this study, pyrazolyl-1H-pyridine derivatives were proposed as ligands of this type, including 2-(3-phenyl-1H-pyrazole-5-yl)pyridine (L1) and 2-methyl-6-(3-phenyl-1H-pyrazole-5-yl)pyridine (L2). It was found that a complexes of the composition [AgPzL₁]n (1 : 1 : 1), regardless of the stoichiometry of the reactants, form in solution. When the resulting compounds are crystallized from toluene, binuclear complexes with the composition [AgPz₂Ln]₂ per one solvent molecule are formed. The formation of these structures is attributed to the formation of hydrogen bonds between the NH groups of pyrazole-pyridine (Ln) and the unshared electron pairs of the nitrogen atoms of the pyrazolate ligands. Shortened Ag…Ag contacts (3.143-3.197 Å) are observed in the complex, leading to additional stabilization of the structure. As a result, the compounds exhibit ligand-centered phosphorescence in the solid state at room temperature.
About the authors
G. B. Yakovlev
Nesmeyanov Institute of Organoelement Compounds
Email: tit@ineos.ac.ru
Moscow, 119334 Russia
A. F. Smol'yakov
Nesmeyanov Institute of Organoelement Compounds
Email: tit@ineos.ac.ru
Moscow, 119334 Russia
O. A. Filippov
Nesmeyanov Institute of Organoelement Compounds
Email: tit@ineos.ac.ru
Moscow, 119334 Russia
A. A. Titov
Nesmeyanov Institute of Organoelement Compounds
Email: tit@ineos.ac.ru
Moscow, 119334 Russia
E. S. Shubina
Nesmeyanov Institute of Organoelement Compounds
Author for correspondence.
Email: tit@ineos.ac.ru
Moscow, 119334 Russia
References
- Mohamed A.A. // Coord. Chem. Rev. 2010. V. 254. P. 1918. http://dx.doi.org/10.1016/j.ccr.2010.02.003
- Fujisawa K., Ishikawa Y., Miyashita Y. et al. // Inorg. Chim. Acta. 2010. V. 363. P. 2977. http://dx.doi.org/10.1016/j.ica.2010.05.014
- Rawashdeh-Omary M.A., Rashdan M.D., Dharanipathi S. et al. // Chem. Commun. 2011. V. 47. P. 1160. http://dx.doi.org/10.1039/c0cc03964k
- Jayaratna N.B., Olmstead M.M., Kharisov B.I. et al. // Inorg. Chem. 2016. V. 55. P. 8277. http://dx.doi.org/10.1021/acs.inorgchem.6b01709
- Zheng J., Lu Z., Wu K. et al. // Chem. Rev. 2020. V. 120. P. 9675. http://dx.doi.org/10.1021/acs.chemrev.0c00011
- Titov A.A., Smolyakov A.F., Filippov O.A. et al. // Russ. J. Coord. Chem. 2022. V. 48. P. 615. http://dx.doi.org/10.1134/s1070328422100086
- Song J.G., Zheng J., Wei R.J. et al. // Chem. 2024. V. 10. P. 924. https://doi.org/10.1016/j.chempr.2023.12.004
- Olbrykh A.P., Tsorieva A.V., Korshunov V.M. et al. // Inorg. Chem. Front. 2025. V. 12. P. 812. https://doi.org/10.1039/d4qi02624a
- Olbrykh A., Yakovlev G., Titov A. et al. // Crystals. 2025. V. 15. P. 115. http://dx.doi.org/10.3390/cryst15020115
- Omary M.A., Rawashdeh-Omary M.A., Diyabalanage H.V. et al. // Inorg. Chem. 2003. V. 42. P. 8612. https://doi.org/10.1021/ic0347586
- Titov A.A., Filippov O.A., Smol'yakov A.F. et al. // Dalton Trans. 2019. V. 48. P. 8410. http://dx.doi.org/10.1039/c9dt01355e
- Emashova S.K., Titov A.A., Filippov O.A. et al. // Eur. J. Inorg. Chem. 2019. V. 2019. P. 4855. http://dx.doi.org/10.1002/ejic.201901050
- Omary M.A., Determan J.J., Palehepitiya Gamage C.S. et al. // Comment Inorg. Chem. 2019. V. 40. P. 1. http://dx.doi.org/10.1080/02603594.2019.1701448
- Dias H.V.R., Palehepitiya Gamage C.S., Jayaratna N.B. et al. // New J. Chem. 2020. V. 44. P. 17079. http://dx.doi.org/10.1039/d0nj04007j
- Baranova K.F., Titov A.A., Shakirova J.R. et al. // Inorg. Chem. 2024. V. 63. P. 16610. http://dx.doi.org/10.1021/acs.inorgchem.4c00751
- Yakovlev G.B., Titov A.A., Smol'yakov A.F. et al. // Molecules. 2023. V. 28. P. 1189. http://dx.doi.org/10.3390/molecules28031189
- Dias H.V.R., Diyabalanage H.V.K., Rawashdeh-Omary M.A. et al. // J. Am. Chem. Soc. 2003. V. 125. P. 12072. http://dx.doi.org/10.1021/ja036736o
- Dias H.V., Diyabalanage H.V., Eldabaja M.G. et al. // J. Am. Chem. Soc. 2005. V. 127. P. 7489. http://dx.doi.org/10.1021/ja0427146
- Omary M.A., Rawashdeh-Omary M.A., Gonser M.W.A. et al. // Inorg. Chem. 2005. V. 44. P. 8200. http://dx.doi.org/10.1021/ic0508730
- Soria L., Cano M., Campo J.A. et al. // Polyhedron. 2017. V. 125. P. 141. http://dx.doi.org/10.1016/j.poly.2016.10.049
- Fujisawa K., Kobayashi Y., Okano M. et al. // Molecules. 2023. V. 28. P. 2936. http://dx.doi.org/10.3390/molecules28072936
- Titov A.A., Smol'yakov A.F., Chernyadyev A.Y. et al. // Chem. Commun. 2024. V. 60. P. 847. http://dx.doi.org/10.1039/d3cc05659g
- Emashova S.K., Titov A.A., Smol'yakov A.F. et al. // Inorg. Chem. Front. 2022. V. 9. P. 5624. http://dx.doi.org/10.1039/d2qi01648f
- Yang Y., Horiuchi S., Omoto K. et al. // Chem. Lett. 2024. V. 53. P. upad004. http://dx.doi.org/10.1093/chemle/upad004
- Beaudelot J., Oger S., Perusko S. et al. // Chem. Rev. 2022. V. 122. P. 16365. http://dx.doi.org/10.1021/acs.chemrev.2c00033
- Dos Santos J.M., Hall D., Basumatary B. et al. // Chem. Rev. 2024. V. 124. P. 13736. http://dx.doi.org/10.1021/acs.chemrev.3c00755
- Baranova K.F., Titov A.A., Smol'yakov A.F. et al. // Molecules. 2021. V. 26. P. 6869. https://doi.org/10.3390/molecules26226869
- Titova E.M., Titov A.A., Shubina E.S. // Russ. Chem. Rev. 2023. V. 92. P. RCR5099. http://dx.doi.org/10.59761/rcr5099
- Shafikov M.Z., Czerwieniec R., Yersin H. // Dalton Trans. 2019. V. 48. P. 2802. http://dx.doi.org/10.1039/c8dt04078h
- Petyuk M.Y., Meng L., Ma Z. et al. // Angew. Chem. Int. Ed. 2024. V. 63. P. e202412437. http://dx.doi.org/10.1002/anie.202412437
- Davydova M.P., Xu T., Agafontsev A.M. et al. // Angew. Chem. Int. Ed. 2025. V. 64. P. e202419788. http://dx.doi.org/10.1002/anie.202419788
- Yersin H., Czerwieniec R., Shafikov M.Z. et al. // Chem. Phys. Chem. 2017. V. 18. P. 3508. http://dx.doi.org/10.1002/cphc.201700872
- Vinogradova K.A., Rakhmanova M.I., Taigina M.D. et al. // Russ. J. Coord. Chem. 2024. V. 50. P. 567. http://dx.doi.org/10.1134/s1070328424600657
- Li Z.Q., Guo J.J., Feng C. // Russ. J. Coord. Chem. 2023. V. 49. P. 765. http://dx.doi.org/10.1134/s1070328422600498
- Schowtka B., Müller C., Görls H. et al. // Z. Anorg. Allg. Chem. 2014. V. 640. P. 916. http://dx.doi.org/10.1002/zaac.201300637
- Sheldrick G. // Acta Crystallogr., Sect. A. 2015. V. 71. P. 3. http://dx.doi.org/10.1107/S2053273314026370
- Sheldrick G. // Acta Crystallogr., Sect. C. 2015. V. 71. P. 3. http://dx.doi.org/10.1107/S2053229614024218
- Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. P. 339. http://dx.doi.org/10.1107/S0021889808042726
- Soria L., Cuerva C., Cano M. et al. // Dyes Pigm. 2018. V. 150. P. 323. https://doi.org/10.1016/j.dyepig.2017.12.024
- Trofimova O.Yu., Pashanova K.I., Yershova I.V. et al. // Russ. J. Inorg. Chem. 2023. V. 68. P. 1154. http://dx.doi.org/10.31857/S0044457X23600846
- Uvarova M.A., Shmelev M.A., Nefedov S.E. // Russ. J. Coord. Chem. 2025. V. 50. P. 1029. http://dx.doi.org/10.1134/s1070328424600736
- Avdeeva V.V., Vologzhanina A.V., Nikiforova S.E. et al. // Russ. J. Inorg. Chem. 2023. V. 68. P. 737. https://doi.org/10.1134/S0036023622602914
Supplementary files
