Polyoxotungstenphosphate complexes with hexamethylenetetramine and copper ions
- Authors: Moroz Y.A.1, Shapovalov V.A.2, Lozinsky N.S.1, Tokiy N.V.2, Drokina T.V.3, Vorotynov A.M.3
-
Affiliations:
- Litvinenko Institute of Physical Organic and Coal Chemistry
- Galkin Donetsk Institute of Physics and Technology
- Kirensky Institute of Physics of the Russian Academy of Sciences
- Issue: Vol 70, No 8 (2025)
- Pages: 1014-1020
- Section: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://bakhtiniada.ru/0044-457X/article/view/308589
- DOI: https://doi.org/10.31857/S0044457X25080043
- EDN: https://elibrary.ru/jjgueo
- ID: 308589
Cite item
Abstract
Previously undescribed in the literature complexes of tungsten phosphate metallates with copper ions Cu2+ and hexamethylenetetramine of the composition Rb5[PW11O39Cu(H2O)] ‧ 9H2O (I), Rb5[PW11O39Cu(C6H12N4)] ‧ ‧ 10H2O (II), Rb5[PW11O39Zn0.95Cu0.05(H2O)] ‧ 9H2O (III) and Rb5[PW11O39Zn0.95Cu0.05(C6H12N4)] ‧ 10H2O (IV) were synthesized and studied by electron and IR spectroscopy, X-ray phase analysis and electron paramagnetic resonance. The shift of the absorption maximum of copper ions to the long-wavelength region of the spectrum upon transition from [Cu(H2O)6]2+ to [PW11O39Cu(H2O)]5–, [PW11O39Zn0.95Cu0.05(H2O)]5–, [PW11O39Cu(C6H12N4)]5– and [PW11O39Zn0.95Cu0.05(C6H12N4)]5–is the result of a change in the magnitude of the ligand field strength in the inner sphere of the complexes. The electron paramagnetic resonance method has established that the magnitude of the ligand field around the octahedrally coordinated Cu2+ ions of complexes (III) and (IV) is significantly different: the height of the potential barrier of the crystal field at the location of the Cu2+ ion differs more than twofold, which is due to the replacement of a water molecule by a hexamethylenetetramine molecule C6H12N4. The results of the studies can be useful in the synthesis and establishment of the structure of other polyoxotungstenmetallates with paramagnetic ions in the inner sphere of the complexes.
About the authors
Y. A. Moroz
Litvinenko Institute of Physical Organic and Coal Chemistry
Email: jaroslavchem@mail.ru
Donetsk, 283048 Russia
V. A. Shapovalov
Galkin Donetsk Institute of Physics and Technology
Email: jaroslavchem@mail.ru
Donetsk, 283048 Russia
N. S. Lozinsky
Litvinenko Institute of Physical Organic and Coal Chemistry
Email: jaroslavchem@mail.ru
Donetsk, 283048 Russia
N. V. Tokiy
Galkin Donetsk Institute of Physics and Technology
Email: jaroslavchem@mail.ru
Donetsk, 283048 Russia
T. V. Drokina
Kirensky Institute of Physics of the Russian Academy of Sciences
Email: jaroslavchem@mail.ru
Krasnoyarsk, 660036 Russia
A. M. Vorotynov
Kirensky Institute of Physics of the Russian Academy of Sciences
Author for correspondence.
Email: jaroslavchem@mail.ru
Krasnoyarsk, 660036 Russia
References
- Pope M.T. Heteropoly and Isopoly Oxometalates. Berlin: Springer-Verlag, 1983. 231 p.
- Терещенко Д.С., Бузоверов М.Е., Глазунов Т.Ю. и др. // Журн. неорган. химии. 2023. Т. 68. № 9. С. 1312. https://doi.org/10.31857/S0044457X23601190
- Мороз Я.А., Лозинский Н.С., Заритовский А.Н. и др. // Журн. общ. химии. 2023. Т. 93. № 7. С. 1139. https://doi.org/10.31857/S0044460X23070193
- Мороз Я.А., Лозинский Н.С., Лопанов А.Н. и др. // Неорган. материалы. 2021. Т. 57. № 8. С. 878. https://doi.org/10.31857/S0002337X21080224
- Yang M., Li J., Hui K. et al. // Dalton Trans. 2024. V. 53. P. 15412. https://doi.org/10.1039/D4DT01894J
- Трофимова О.Ю., Пашанова К.И., Ершова И.В. и др. // Журн. неорган. химии. 2023. Т. 68. № 9. С. 1154. https://doi.org/10.31857/S0044457X23600846
- Qian D.-Q., Lin Yu-D., Xiao H.-P. et al. // Polyoxometalates. 2024. V. 3. P. 9140040. https://doi.org/10.26599/POM.2023.9140040
- Choi J., Kim J.K., Park D. et al. // J. Mol. Catal. A: Chem. 2013. V. 371. P. 111. https://doi.org/10.1016/j.molcata.2013.01.035.choi2013.pdf
- Song J., Luo Z., Britt D.K. et al. // J. Am. Chem. Soc. 2011. V. 133. P. 16839. https://doi.org/10.1021/ja203695h
- Azadi O., Taheri A., Babaei A. // Mater. Chem. Phys. 2023. V. 297. P. 127400. https://doi.org/10.1016/j.matchemphys.2023.127400
- Roustaei S., Taheri A. // Preprint. 2022. Version 1 posted 21. https://doi.org/10.21203/rs.3.rs-2211059/v1
- Lange L.E., Obendorf S.K. // ACS Appl. Mater. Interfaces. 2015. V. 7. P. 3974. https://doi.org/10.1021/am506510q.
- Frenzel R.A., Romanelli G.P., Blanco M.N. et al. // J. Chem. Sci. 2015. V. 127. P. 123. https://doi.org/10.1007/s12039-014-0757-y
- Sun J.Y., Wang Z.L., Zhang Z. et al. // Polyoxometalates. 2024. V. 3. № 1. Art. 9140039. https://doi.org/10.26599/POM.2023.9140039
- Aramesh N., Yadollahi B. // Mater. Adv. 2024. V. 5. P. 5781. https://doi.org/10.1039/d4ma00178h File d4ma00178h
- Zhang W., Liu R., Lv X. et al. // Molecules. 2023. V. 28. P. 6460. https://doi.org/10.3390/molecules28186460
- Mozafari R., Heidarizadeh F. // J. Clust. Sci. 2016. V. 27. P. 1629. https://doi.org/10.1007/s10876-016-1023-x
- Thompson J.A. Using theoretical chemistry to model the redox properties of polyoxometalates and their potential as ammonia synthesis catalysts. PhD thesis. University of Glasgow. 2024. 153 p.
- Silva M.J.d., da Silva Andrade P.H. // Processes. 2024. V. 12. P. 2587. https://doi.org/10.3390/pr12112587
- Hao X., Liu T., Ying J. et al. // Cryst. Growth Des. 2024. V. 24. P. 9735. https://doi.org/10.1021/acs.cgd.4c01268 SI cg4c01268_si_001
- Samiey B., Cheng C.H., Wu J. // Materials. 2014. V. 7. P. 673. https://doi.org/10.3390/ma7020673
- Лозинский Н.С., Лопанов А.Н., Мороз Я.А. и др. // Журн. неорган. химии. 2024. Т. 69. № 7. С. 1029. https://doi.org/10.1134/S0036023624600953
- Воротынов А.М., Петраковский Г.А., Саблина К.А. и др. // Физика тв. тела. 2010. T. 52. № 11. C. 2259.
- Шаповалов В.А., Житлухина Е.С., Ламонова К.В. и др. // Физика низких температур. 2014. Т. 40. № 5. С. 595.
- Sruthi G., Shakeela K., Shanmugam R. et al. // Phys. Chem. Chem. Phys. 2020. V. 22. P. 3329. https://doi.org/10.1039/C9CP06284J
- Shapovalov V.A., Zhitlukhina E.S., Lamonova K.V. et al. // J. Phys.: Condens. Matter. 2010. № 22. P. 245504.
- Shapovalov V.A., Shapovalov V.V., Rafailovich M. et al. // J. Phys. Chem. C. 2013. № 117. P. 7830. https://doi.org/10.1021/jp311456a
Supplementary files
