Preparation and investigation of composite based on reduced graphene oxide and Fe3O4 nanoparticles
- Authors: Ibragimova V.R.1,2, Sapkov I.V.1,2,3, Efremova E.I.1,2,4, Kudryashova Z.A.4, Rustamova E.G.1,5, Korolev D.V.6, Kunitsyna E.I.6, Ioni Y.V.1,4
-
Affiliations:
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences (IGIC RAS)
- Department of Materials Science, Lomonosov Moscow State University
- Physics Department, Lomonosov Moscow State University
- Lomonosov Moscow State University of Fine Chemical Technologies
- Joint Stock Company “Aviation Electronics and Communication”
- The Institute of Problems of Chemical Physics (IPCP)
- Issue: Vol 70, No 8 (2025)
- Pages: 1089-1096
- Section: НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ И НАНОМАТЕРИАЛЫ
- URL: https://bakhtiniada.ru/0044-457X/article/view/308586
- DOI: https://doi.org/10.31857/S0044457X25080138
- EDN: https://elibrary.ru/jjycdb
- ID: 308586
Cite item
Abstract
Graphene oxide (GO) and composites based on it are often used to produce graphene-like materials by thermal or chemical reduction, and the reduction method strongly affects the properties of the materials. In this study, a new method was proposed to prepare a conductive composite based on reduced graphene oxide (RGO) with magnetite nanoparticles (NPs) with an average diameter of 18 nm dispersed on its surface. The method consisted of treating a GO-based composite with Fe3O4 on the its surface in supercritical isopropanol. The composites based on GO and RGO and magnetite NPs were investigated by FTIR spectroscopy, X-ray diffractive analysis and scanning electron microscopy. It is shown that the sample compact film of the RGO-based composite has specific surface resistivity is 22 Ohm/cm² and saturation magnetisation is 32.3 emu/g.
About the authors
V. R. Ibragimova
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences (IGIC RAS); Department of Materials Science, Lomonosov Moscow State University
Email: Acidladj@mail.ru
Leninskii prospekt, 31, Moscow, 119991 Russia; Leninskie Gory 1, Building 73, Moscow, 119991 Russia
I. V. Sapkov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences (IGIC RAS); Department of Materials Science, Lomonosov Moscow State University; Physics Department, Lomonosov Moscow State University
Email: Acidladj@mail.ru
Leninskii prospekt, 31, Moscow, 119991 Russia; Leninskie Gory 1, Building 73, Moscow, 119991 Russia; Leninskie Gory 1, Building 2, Moscow, 119991 Russia
E. I. Efremova
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences (IGIC RAS); Department of Materials Science, Lomonosov Moscow State University; Lomonosov Moscow State University of Fine Chemical Technologies
Email: Acidladj@mail.ru
Leninskii prospekt, 31, Moscow, 119991 Russia; Leninskie Gory 1, Building 73, Moscow, 119991 Russia; Vernadsky prospect 86, Moscow, 119571 Russia
Z. A. Kudryashova
Lomonosov Moscow State University of Fine Chemical Technologies
Email: Acidladj@mail.ru
Vernadsky prospect 86, Moscow, 119571 Russia
E. G. Rustamova
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences (IGIC RAS); Joint Stock Company “Aviation Electronics and Communication”
Email: Acidladj@mail.ru
Leninskii prospekt, 31, Moscow, 119991 Russia; proezd Entuziastov 15, Building 8А, Moscow, 111024 Russia
D. V. Korolev
The Institute of Problems of Chemical Physics (IPCP)
Email: Acidladj@mail.ru
Academician Semenov prospect 1, Chernogolovka, 142432 Russia
E. I. Kunitsyna
The Institute of Problems of Chemical Physics (IPCP)
Email: Acidladj@mail.ru
Academician Semenov prospect 1, Chernogolovka, 142432 Russia
Y. V. Ioni
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences (IGIC RAS); Lomonosov Moscow State University of Fine Chemical Technologies
Author for correspondence.
Email: Acidladj@mail.ru
Leninskii prospekt, 31, Moscow, 119991 Russia; Vernadsky prospect 86, Moscow, 119571 Russia
References
- Chang H. // MRS Bulletin. 2015. V. 40. № 5. P. 445. https://doi.org/10.1557/mrs.2015.93
- Wang P., Hu M., Wang H. et al. // Adv. Sci. 2020. V. 7. № 20. P. 2001116. https://doi.org/10.1002/advs.202001116
- Corzo D., Tostado-Blázquez G., Baran D. // Front. Electron. 2020. V. 1. https://doi.org/10.3389/felec.2020.594003
- Han T.H., Kim H., Kwon S.J. et al. // Mater. Sci. Eng. R.: Rep. 2017. V. 118. P. 1. https://doi.org/10.1016/j.mser.2017.05.001
- Feng H., Fang X., Liu X. et al. // Compos. -A: Appl. Sci. Manuf. 2018. V. 109. P. 578. https://doi.org/10.1016/j.compositesa.2018.03.035
- Mitin D.M., Pavlov A., Fedorov F.S. et al. // Sens. Actuators, B: Chem. 2024. V. 417. P. 136095. https://doi.org/10.1016/j.snb.2024.136095
- Mehmood T., Alotaibi B.M., Alrowaily A.W. et al. // Diam. Relat. Mater. 2025. V. 152. P. 11943. https://doi.org/10.1016/j.diamond.2024.111943
- Qi S., Zhang C., Sun M. et al. // Diam. Relat. Mater. 2025. V. 154. P. 112258. https://doi.org/10.1016/j.diamond.2025.112258
- Stefan-Henningsen E., Roberts N., Kiani A. // Results Eng. 2025. V. 25. P. 104551. https://doi.org/10.1016/j.rineng.2025.104551
- Kang D., Lee M., Lee S.J. et al. // Appl. Surf. Sci. 2023. V. 624. P. 157121. https://doi.org/10.1016/j.apsusc.2023.157121
- Mohamed Z., Al-Asbahi B.A., Al-Hada N.M. et al. // Surf. Interfaces. 2025. V. 57. P. 105761. https://doi.org/10.1016/j.surfin.2025.105761
- Ivannikova A.S., Ioni Y.V., Sapkov I.V. et al. // Russ. J. Inorg. Chem. 2023. V. 68. № 6. P. 787. https://doi.org/10.1134/S0036023623600703
- Ioni Y.V., Voronov V.V., Naumkin A.V. et al. // Russ. J. Inorg. Chem. 2015. V. 60. P. 709. https://doi.org/10.1134/S0036023615060066
- Bao Z.L., Guo N., Feng J.Y. et al. // Surf. Interfaces. 2025. V. 62. P. 106258. https://doi.org/10.1016/j.surfin.2025.106258
- Hilmi D., Zaim S., Mortadi A. et al. // Results Eng. 2024. V. 23. P. 102673. https://doi.org/10.1016/j.rineng.2024.102673
- Ioni Y.V., Groshkova Y.A., Buslaeva E.Y. et al. // Russ. J. Inorg. Chem. 2021. V. 66. P. 950. https://doi.org/10.1134/S0036023621060115
- Bhaskaram D.S., Biswal S., Govindaraj G. et al. // J. Alloys Compd. 2025. V. 1010. P. 178129. https://doi.org/10.1016/j.jallcom.2024.178129
- Apsey H., Hill D., McCoy T.M. et al. // J. Colloid Interface Sci. 2025. V. 687. P. 189. https://doi.org/10.1016/j.jcis.2025.02.055
- Yao F., Li W., SKS S.K. et al. // Chem. Eng. J. 2024. V. 488. P. 150828. https://doi.org/10.1016/j.cej.2024.150828
- Liang T., Hou W., Ji J. et al. // Sens. Actuators, А: Phys. 2023. V. 350. P. 144104. https://doi.org/10.1016/j.sna.2022.114104
- Ioni Y., Khamidullin T., Sapkov I. et al. // Carbon Lett. 2024. V. 34. № 4. P.1219. https://doi.org/10.1007/s42823-023-00680-3
- Massart R. // IEEE Trans. Magn. 1981. V. 17. № 2. 10.1109/tmag.1981.1061188' target='_blank'>https://doi: 10.1109/tmag.1981.1061188
- Galstenkova M.R., Mukhortova Y.R., Pryadko A.S. et al. // Nano-Struct. Nano-Objects. 2025. V. 41. P. 101431. https://doi.org/10.1016/j.nanoso.2025.101431
- Sarmasti K., Golchin A., Bostani A. et al. // Chemosphere. 2025. V. 378. P. 144424. https://doi.org/10.1016/j.chemosphere.2025.144424
- Basit A., Yaqoob Z., Zahid A. et al. // Heliyon. 2025. V. 11. № 2. P. e41063. https://doi.org/10.1016/j.heliyon.2024.e41063
- Brusko V., Khannanov A., Rakhmatullin A. et al. // Carbon. 2024. V. 229. 119507. https://doi.org/10.1016/j.carbon.2024.119507
- Tayyebi A., Outokesh M. // RSC Advances. 2016. V. 6. № 17. P. 13898. https://doi.org/10.1039/C5RA19057F
- Mondal A., Kundu A.K., Biswas H.S. et al. // Inorg. Chem. Commun. 2024. V. 170. P. 113016. https://doi.org/10.1016/j.inoche.2024.113016
- Rehman T. ur, Shah L.A., Khan M. // Mater. Adv. 2024. V. 5. № 2. P. 806. https://doi.org/10.1039/D3MA00803G
- Ribeiro V.G.P., Barreto A.C.H., Denardin J.C. et al. // J. Mater. Adv. 2013. V. 48. P. 7875. https://doi.org/10.1007/s10853-013-7477-4
Supplementary files
