Crystal structures and properties of metal-organic coordination polymers of the [Zn2(BDC)X (BDC-I)(2–X)DABCO] series
- 作者: Zaguzin A.S.1, Zaitsev Y.A.1,2, Zaitsev A.V.1,3, Korobeynikov N.A.1, Bondarenko M.A.1, Maksimovskii E.A.1, Fedin V.P.1, Adonin S.A.1,4
-
隶属关系:
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
- Novosibirsk State Technical University
- Novosibirsk State University
- Favorsky Institute of Chemistry, Siberian Branch, Russian Academy of Sciences
- 期: 卷 70, 编号 8 (2025)
- 页面: 989-994
- 栏目: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://bakhtiniada.ru/0044-457X/article/view/308582
- DOI: https://doi.org/10.31857/S0044457X25080016
- EDN: https://elibrary.ru/jiixdy
- ID: 308582
如何引用文章
详细
New mixed-ligand organometallic coordination polymers based on zinc terephthalate (bdc), 2-iodoterephthalate (bdc-I) and 1,4-diazabicyclo[2.2.2]octane (dabco) were obtained: [Zn2(bdc)1.67(bdc-I)0.33dabco] (I), [Zn2(bdc)1.46(bdc-I)0.54dabco] (II), [Zn2(bdc)1.12(bdc-I)0.88dabco] (III), [Zn2(bdc)0.80(bdc-I)1.2dabco] (IV), [Zn2(bdc)0.46(bdc-I)1.54dabco] (V). Their structure and composition were determined by X-ray diffraction, X-ray phase, and elemental analysis. Compounds I–V are isostructural with [Zn2(bdc)2(dabco)], but not with [Zn2(bdc-I)2(dabco)], which we have not described previously, which is confirmed by X-ray phase analysis data. Experiments on the sorption of diiodine vapors are consistent with the idea that the presence of a larger amount of 2-iodoterephthalate in the MOF should lead to a decrease in pore volume: the greatest amount of I2 is absorbed by I, and the smallest by V.
作者简介
A. Zaguzin
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
Email: zaguzin@niic.nsc.ru
Academician Lavrentiev Avenue 3, Novosibirsk, 630090 Russia
Y. Zaitsev
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences; Novosibirsk State Technical University
Email: zaguzin@niic.nsc.ru
Academician Lavrentiev Avenue 3, Novosibirsk, 630090 Russia; Karl Marx Avenue 20, Novosibirsk, 630073 Russia
A. Zaitsev
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences; Novosibirsk State University
Email: zaguzin@niic.nsc.ru
Academician Lavrentiev Avenue 3, Novosibirsk, 630090 Russia; Pirogova 1, Novosibirsk, 630090 Russia
N. Korobeynikov
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
Email: zaguzin@niic.nsc.ru
Academician Lavrentiev Avenue 3, Novosibirsk, 630090 Russia
M. Bondarenko
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
Email: zaguzin@niic.nsc.ru
Academician Lavrentiev Avenue 3, Novosibirsk, 630090 Russia
E. Maksimovskii
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
Email: zaguzin@niic.nsc.ru
Academician Lavrentiev Avenue 3, Novosibirsk, 630090 Russia
V. Fedin
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
Email: zaguzin@niic.nsc.ru
Academician Lavrentiev Avenue 3, Novosibirsk, 630090 Russia
S. Adonin
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences; Favorsky Institute of Chemistry, Siberian Branch, Russian Academy of Sciences
编辑信件的主要联系方式.
Email: zaguzin@niic.nsc.ru
Academician Lavrentiev Avenue 3, Novosibirsk, 630090 Russia; Favorsky 1, Irkutsk, 664033 Russia
参考
- Pavlov D.I., Ryadun A.A., Fedin V.P. et al. // J. Struct. Chem. 2024. V. 65. № 12. P. 2567. https://doi.org/10.1134/S0022476624120199
- Cheplakova A.M., Eliseev E.A., Samsonenko D.G. et al. // J. Struct. Chem. 2024. V. 65. № 6. P. 1219. https://doi.org/10.1134/S0022476624060106
- Borisova A.S., Kuliukhina D.S., Malysheva A.S. et al. // Russ. Chem. Bull. 2024. V. 73. № 12. P. 3567. https://doi.org/10.1007/s11172-024-4467-4
- Arsenyeva K.V., Klimashevskaya A.V., Maleeva A.V. et al. // Russ. J. Coord. Chem. 2024. V. 50. № 11. P. 892. https://doi.org/10.1134/S1070328424601183
- Trofimova O.Y., Kolevatov D.S., Druzhkov N.O. et al. // Russ. J. Coord. Chem. 2024. V. 50. № 9. P. 636. https://doi.org/10.1134/S1070328424700726
- Samulionis A.S., Voronina J.K., Melnikov S.N. et al. // Russ. J. Coord. Chem. 2024. V. 50. № 9. P. 757. https://doi.org/10.1134/S1070328424601043
- Bazhina E.S., Shmelev M.A., Kiskin M.A. et al. // Russ. J. Coord. Chem. 2024. V. 50. № 8. P. 603. https://doi.org/10.1134/S1070328424600566
- Rubtsova I.K., Melnikov S.N., Shmelev M.A. et al. // Mendeleev Commun. 2020. V. 30. № 6. P. 722. https://doi.org/10.1016/j.mencom.2020.11.011
- Kim H., Samsonenko D.G., Das S. et al. // Chem. — An Asian J. 2009. V. 4. № 6. P. 886. https://doi.org/10.1002/asia.200900020
- Tsivadze A.Y., Aksyutin O.E., Ishkov A.G. et al. // Russ. Chem. Rev. 2019. V. 88. № 9. P. 925. https://doi.org/10.1070/RCR4873
- Solovtsova O.V., Pulin A.L., Men’shchikov I.E. et al. // Prot. Met. Phys. Chem. Surfaces. 2020. V. 56. № 6. P. 1114. https://doi.org/10.1134/S2070205120060222
- Dubskikh V.A., Lysova A.A., Samsonenko D.G. et al. // Molecules. 2021. V. 26. № 5. P. 1269. https://doi.org/10.3390/molecules26051269
- Abasheeva K.D., Demakov P.A., Polyakova E.V. et al. // Nanomaterials. 2023. V. 13. № 20. P. 2773. https://doi.org/10.3390/nano13202773
- Sapianik A.A., Kovalenko K.A., Samsonenko D.G. et al. // Chem. Commun. 2020. V. 56. № 59. P. 8241. https://doi.org/10.1039/d0cc03227a
- Sapianik A.A., Dudko E.R., Kovalenko K.A. et al. // ACS Appl. Mater. Interfaces. 2021. V. 13. № 12. P. 14768. https://doi.org/10.1021/acsami.1c02812
- Cheplakova A.M., Kovalenko K.A., Samsonenko D.G. et al. // Inorg. Chem. 2024. V. 63. № 51. P. 24187. https://doi.org/10.1021/acs.inorgchem.4c03990
- Seromlyanova K.A., Mushtakov A.G., Murtazin D.V. et al. // Pet. Chem. 2023. V. 63. № 2. P. 233. https://doi.org/10.1134/S0965544123020263
- Isaeva V.I., Chernyshev V.V., Fomkin A.A. et al. // Microporous Mesoporous Mater. 2020. V. 300. P. 110136. https://doi.org/10.1016/j.micromeso.2020.110136
- Isaeva V.I., Tarasov A.L., Tkachenko O.P. et al. // J. Porous Mater. 2025. V. 32. № 1. P. 263. https://doi.org/10.1007/s10934-024-01695-5
- Isaeva V.I., Nefedov O.M., Kustov L.M. // Catalysts. 2018. V. 8. № 9. P. 368. https://doi.org/10.3390/catal8090368
- Demakov P.A., Samsonenko D.G., Dybtsev D.N. et al. // Russ. Chem. Bull. 2022. V. 71. № 1. P. 83. https://doi.org/10.1007/s11172-022-3380-y
- Demakov P.A., Fedin V.P. // Russ. Chem. Bull. 2022. V. 71. № 5. P. 967. https://doi.org/10.1007/s11172-022-3498-y
- Demakov P.A., Lazarenko V.A., Dorovatovskii P.V. et al. // J. Struct. Chem. 2023. V. 64. № 12. P. 2417. https://doi.org/10.1134/S0022476623120132
- Yang Y., Yao H.F., Xi F.G. et al. // J. Mol. Catal. A: Chem. 2014. V. 390. P. 198. https://doi.org/10.1016/j.molcata.2014.04.002
- Yashkova K.A., Mel’nikov S.N., Nikolaevskii S.A. et al. // J. Struct. Chem. 2021. V. 62. № 9. P. 1378. https://doi.org/10.1134/S0022476621090067
- Tahmouresilerd B., Larson P.J., Unruh D.K. et al. // Catal. Sci. Technol. 2018. V. 8. № 17. P. 4349. https://doi.org/10.1039/C8CY00794B
- Cadman L.K., Bristow J.K., Stubbs N.E. et al. // Dalton. Trans. 2016. V. 45. № 10. P. 4316. https://doi.org/10.1039/C5DT04045K
- Osborn Popp T.M., Plantz A.Z., Yaghi O.M. et al. // ChemPhysChem. 2020. V. 21. № 1. P. 32. https://doi.org/10.1002/cphc.201901043
- Li S., Chung Y.G., Simon C.M. et al. // J. Phys. Chem. Lett. 2017. V. 8. № 24. P. 6135. https://doi.org/10.1021/acs.jpclett.7b02700
- Kogolev D., Semyonov O., Metalnikova N. et al. // J. Mater. Chem. A. 2023. V. 11. № 3. P. 1108. https://doi.org/10.1039/D2TA08127J
- Zhang K.L., Jing C.Y., Deng Y. et al. // J. Coord. Chem. 2014. V. 67. № 9. P. 1596. https://doi.org/10.1080/00958972.2014.926006
- Costa P.J. // Phys. Sci. Rev. 2019. V. 2. № 11. https://doi.org/10.1515/psr-2017-0136
- Li B., Zang S.Q., Wang L.Y. et al. // Coord. Chem. Rev. 2016. V. 308. P. 1. https://doi.org/10.1016/j.ccr.2015.09.005
- Gilday L.C., Robinson S.W., Barendt T.A. et al. // Chem. Rev. 2015. V. 115. № 15. P. 7118. https://doi.org/10.1021/cr500674c
- Soldatova N.S., Suslonov V.V., Ivanov D.M. et al. // Cryst. Growth Des. 2023. V. 23. № 1. P. 413. https://doi.org/10.1021/acs.cgd.2c01090
- Rozhkov A.V., Novikov A.S., Ivanov D.M. et al. // Cryst. Growth Des. 2018. V. 18. № 6. P. 3626. https://doi.org/10.1021/acs.cgd.8b00408
- Eliseeva A.A., Ivanov D.M., Novikov A.S. et al. // Dalton Trans. 2020. V. 49. № 2. P. 356. https://doi.org/10.1039/c9dt04221k
- Katlenok E.A., Kuznetsov M.L., Semenov N.A. et al. // Inorg. Chem. Front. 2023. V. 10. № 10. P. 3065. https://doi.org/10.1039/d3qi00087g
- Aliyarova I.S., Ivanov D.M., Soldatova N.S. et al. // Cryst. Growth Des. 2021. V. 21. № 2. P. 1136. https://doi.org/10.1021/acs.cgd.0c01463
- Christine T., Tabey A., Cornilleau T. et al. // Tetrahedron. 2019. V. 75. № 52. P. 130765. https://doi.org/10.1016/J.TET.2019.130765
- Sheldrick G.M. // Acta Crystallogr., Sect. A: Found. Adv. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053273314026370
- Sheldrick G.M. // Acta Crystallogr., Sect. C: Struct. Chem. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053229614024218
- Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. № 2. P. 339. https://doi.org/10.1107/S0021889808042726
- Spek A.L. // Acta Crystallogr., Sect. C: Struct. Chem. 2015. V. 71. P. 9. https://doi.org/10.1107/S2053229614024929
- Lee J.Y., Olson D.H., Pan L. et al. // Adv. Funct. Mater. 2007. V. 17. № 8. P. 1255. https://doi.org/10.1002/adfm.200600944
- Zaguzin A.S., Sukhikh T.S., Kolesov B.A. et al. // Polyhedron. 2022. V. 212. P. 115587. https://doi.org/10.1016/j.poly.2021.115587
补充文件
