Finsler–Lagrange Kinetic Model of the Structurization of a Langmuir Monolayer

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A model is proposed for the synthesis of nanocyclic iron coordination complexes on the surface of an aqueous solution of ferric iron salts during a two-dimensional solid (S)–liquid expanded (L') phase transition of first order. Electrocapillary effects in the nucleation kinetics for such Langmuir monolayers are studied in the context of the Finsler–Lagrangian formalism. It is shown that under conditions of rapid compression, an additional local minimum appears in the surface tension potential of the monolayer. This minimum causes supersaturation of the phase and the formation of nuclei (domains) of the crystalline phase with sizes considerably exceeding the critical one, resulting in a plateau on the compression isotherm and the formation of a multidomain monolayer structure. It is established that since the effective charge of hydrated ferrous iron complexes is greater than that of ferric iron complexes, electrocapillary phenomena at the phase boundary lead to the formation of domains of high-spin octahedral ferrous iron complexes with dithionylpyrrole oligomers.

作者简介

N. Krylova

Belarusian State Agrarian Technical University

Email: nina-kr@tut.by
220023, Minsk, Belarus

G. Grushevskaya

Belarusian State University

编辑信件的主要联系方式.
Email: grushevskaja@bsu.by
220030, Minsk, Belarus

参考

  1. Rojewska M., Smułek W., Kaczorek E., Prochaska K. // Membranes. 2021. V. 11. P. 707.
  2. Gavande V., Kim G., Kim B. et al. // Molecular Crystals and Liquid Crystals. 2022. V. 742. P. 133. https://doi.org/10.1080/15421406.2022.2038457
  3. Grushevskaya H.V., Lipnevich I.V., Orekhovskaya T.I. // J. Modern Physics. 2013. V. 4. P. 7. https://doi.org/10.4236/jmp.2013.412A3002
  4. Selector S., Fedorova O., Lukovskaya E. et al. // J. Phys. Chem. B. 2012. V. 116. № 5. P. 1482. https://doi.org/10.1021/jp2074122
  5. Möhwald H., Brezesinski G. // Langmuir. 2016. V. 32. P. 10445. https://doi.org/10.1021/acs.langmuir.6b02518
  6. Блинов Л.М. // УФН. 1988. Т. 155. С. 443.
  7. Kundu S., Datta A. // Colloids and Surfaces A. 2006. V. 289. P. 250. https://doi.org/10.1016/j.colsurfa.2006.07.001
  8. Wang J., Liu B. // Sci. Technol. Adv. Mater. 2019. V. 20. P. 992. https://doi.org/10.1080/14686996.2019.1669220
  9. Бразовский С.А., Дзялошинский И.Е., Муратов А.Р. // ЖЭТФ. 1987. Т. 93. № 3. С. 1110 / Brazovskii S.A., Dzyaloshinskii I.E., Muratov A.R. // Sov. Phys. JETP. 1987. V. 66. Iss. 3. P. 625.
  10. Кац Е.И., Лебедев В.В., Муратов А.Р. // Физика твердого тела. 1989. Т. 31. № 4. С. 189.
  11. Karaborni S., Toxvaerd S. // J. Chem. Phys. 1992. V. 96. P. 5505.
  12. Kaganer V.M., Mӧhwald H., Dutta P. // Rev. Mod. Phys. 1999. V. 71. Iss. 3. P. 779.
  13. O’Connor E. Discontinuous molecular dynamics studies of model Langmuir monolayers: Thesis. University of Prince Edward Island, Canada, 2006. 110 p.
  14. Angerman H.Ja., Johner A., Semenov A.N. // Macromolecules. 2006. V. 39. Iss. 18. P. 6210.
  15. Arora A., Qin J., Morse D.C. et al. // Ibid. 2016. V. 49. Iss. 13. P. 4675. https://doi.org/10.1021/acs.macromol.6b00107
  16. Erukhimovich I., Kriksin Yu. // J. Chem. Phys. 2019. V. 150. P. 224701. https://doi.org/10.1063/1.5108642
  17. Slezov V.V. Kinetics of first-order phase transitions. Weinheim: Wiley-VCH, 2009. 415 p.
  18. Becker R., Doring W. // Annalen der Physik. 1935. V. 416. Iss. 8. P. 719. https://doi.org/10.1002/andp.19354160806
  19. Vollhardt D., Fainerman V.B. // J. Phys. Chem. B. 2002. V. 106. P. 345. https://doi.org/10.1021/jp012798u
  20. Kmetko J., Datta A., Evmenenko G., Dutta P. // Ibid. 2001. V. 105. P. 10818.
  21. Grushevskaya H.V., Krylov G.G., Krylova N.G., Lipnevich I.V. // IOP J. of Physics: CS. 2015. V. 643. P. 012015. https://doi.org/10.1088/1742-6596/643/1/012015
  22. Nandi N., Vollhardt D. // J. Phys. Chem. B. 2004. V. 108. Iss. 49. P. 18793. https://doi.org/10.1021/jp0461697
  23. Ruckenstein E., Li B. // Ibid.1998. V. 102. Iss. 6. P. 981. https://doi.org/10.1021/jp972748i
  24. Cai Z., Rice S.A. // Faraday Discuss. Chem. SOC. 1990. V. 89. P. 211. https://doi.org/10.1039/DC9908900211
  25. Gellert F., Ahrens H., Wulff H., Helm C.A. // Membranes. 2022. V. 12. P. 698. https://doi.org/10.3390/membranes12070698
  26. Balan V., Grushevskaya H., Krylova N., Neagu M. // Int. J. Nonlin. Phen. in Complex Sys. 2016. V. 19. № 3. P. 223.
  27. Крылова Н.Г. // Веснік Брэсцкага ўніверсітэта. 2017. № 2. С. 27.
  28. Крылова Н.Г., Грушевская Г.В., Редьков В.М. // Вес. Нац. акад. навук Беларусі. Сер. фіз.-мат. навук. 2017. № 3. С. 66.
  29. Balan V., Grushevskaya H.V., Krylova N.G. et al. // Applied Sciences. 2019. V. 21. P. 11.
  30. Balan V., Grushevskaya H.V., Krylova N.G., Krylov G.G. // Ibid. 2020. V. 22. P. 94.
  31. Antonelli P.L., Miron R. (Eds.) Lagrange and Finsler geometry: Application to physics and biology. Springer, 1996. 328 p.
  32. Balan V. Jet single-time Lagrange geometry and its application / V. Balan, M. Neagu – Wiley, 2011. 194 p.
  33. Атанасиу Г., Балан В., Брынзей Н., Рахула М. Дифференциальная геометрия второго порядка и приложения: Теория Мирона–Атанасиу. М.: Книжный дом “ЛИБРОКОМ”, 2010. 256 с.
  34. Bao D., Chern S.S., Shen Z. An introduction to Riemann-Finsler geometry. Berlin: Springer, 2000. 431 p.
  35. Грушевская Г.В., Бабенко А.С., Крылова Н.Г. и др. // Наука и инновации. 2019. № 4. С. 23.
  36. Egorova V.P., Grushevskaya H.V., Babenka A.S. et al. // Semiconductors. 2020. V. 54. P. 1873. https://doi.org/10.1134/S1063782620140092
  37. Min J., Peng B., Wen Y. et al. // Synthetic Metals. 2011. V. 161. P. 1832. https://doi.org/10.1016/j.synthmet.2011.06.015
  38. Смирнов В.И., Афанасьев А.В., Простакишин И.С., Беленький Л.И. // Химия гетероциклических соединений. 2013. № 3. С. 416.
  39. Wynberg H., Metselaar J. // Synthetic Communications. 1984. V. 14. Iss. 1. P. 1.
  40. Kel’in A., Kulinkovich O. // Folia pharm. Univ. Carol. (supplementum). 1995. V. 18. P. 96.
  41. Bhande R.S., Landge Y.A., Giri P.A. // J. Chem. Pharm. Res. 2012. V. 4. № 6. P. 3297.
  42. Касюк Ю.В., Ларкин А.В., Федотова Ю.А. // Вестн. БГУ. Сер. 1. 2011. № 2. С. 52.
  43. Крефт В.-Д., Кремп Д., Эбелинг В., Рёпке Г. Квантовая статистика систем заряженных частиц. М.: Мир, 1988. 405 с.
  44. Helm C.A., Moehwald H. J. Phys. Chem. 1988. V. 92. P. 1262. https://doi.org/10.1021/j100316a050
  45. Shih M.C., Bohanon T.M., Mikrut J.M. et al. J. Chem. Phys. 1992. V. 96. № 2. P. 1556. https://doi.org/10.1063/1.462139
  46. Gaines G.L., Jr. Insoluble Monolayers at Liquid–Gas Interfaces. New York: Interscience, 1966. 386 p.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (680KB)
3.

下载 (239KB)
4.

下载 (95KB)
5.

下载 (199KB)

版权所有 © Н.Г. Крылова, Г.В. Грушевская, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».