SEARCH FOR BOUND STATES IN A ONE-DIMENSIONAL QUANTUM SYSTEM USING THE POWER METHOD: PRACTICAL IMPLEMENTATION
- Авторлар: Vrublevskaya N.R.1,2, Shipilo D.E.1,2, Ilyushin P.Y.1,2, Nikolaeva I.A1,2, Kosareva O.G.1,2, Panov N.A1,2
-
Мекемелер:
- Faculty of Physics, Lomonosov Moscow State University
- Lebedev Physical Institute of the Russian Academy of Sciences
- Шығарылым: Том 166, № 5 (2024)
- Беттер: 612-617
- Бөлім: ATOMS, MOLECULES, OPTICS
- URL: https://bakhtiniada.ru/0044-4510/article/view/268670
- DOI: https://doi.org/10.31857/S004445102411004X
- ID: 268670
Дәйексөз келтіру
Аннотация
For numerical solution of the time-dependent Schrödinger equation describing the electron evolution in a given potential interacting with the high-intensity ultrashort pulse field, one has to find bound states of this potential with high accuracy. The paper considers the application of power algorithm using Chebyshev operator polynomials to search for bound states of one-dimensional quasi-Coulomb potential. The algorithm convergence improves with increasing polynomial degree m, saturating at m ≥ 8. For such degree, the ground state is found in ~103 Hamiltonian calculation operations, while higher states require ~105 operations (several seconds and several minutes respectively).
Авторлар туралы
N. Vrublevskaya
Faculty of Physics, Lomonosov Moscow State University; Lebedev Physical Institute of the Russian Academy of Sciences
Email: schipilo.daniil@physics.msu.ru
Ресей, 119991, Moscow; 119991, Moscow
D. Shipilo
Faculty of Physics, Lomonosov Moscow State University; Lebedev Physical Institute of the Russian Academy of Sciences
Email: schipilo.daniil@physics.msu.ru
Ресей, 119991, Moscow; 119991, Moscow
P. Ilyushin
Faculty of Physics, Lomonosov Moscow State University; Lebedev Physical Institute of the Russian Academy of Sciences
Email: schipilo.daniil@physics.msu.ru
Ресей, 119991, Moscow; 119991, Moscow
I. Nikolaeva
Faculty of Physics, Lomonosov Moscow State University; Lebedev Physical Institute of the Russian Academy of Sciences
Email: schipilo.daniil@physics.msu.ru
Ресей, 119991, Moscow; 119991, Moscow
O. Kosareva
Faculty of Physics, Lomonosov Moscow State University; Lebedev Physical Institute of the Russian Academy of Sciences
Email: schipilo.daniil@physics.msu.ru
Ресей, 119991, Moscow; 119991, Moscow
N. Panov
Faculty of Physics, Lomonosov Moscow State University; Lebedev Physical Institute of the Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: schipilo.daniil@physics.msu.ru
Ресей, 119991, Moscow; 119991, Moscow
Әдебиет тізімі
- C. Eckart, Phys.Rev. 35, 1303 (1930).
- J. Javanainen, J.H. Eberly, and Q. Su, Phys. Rev.A 38, 3430 (1988).
- Е.А. Волкова, А.М. Попов, ЖЭТФ 106, 735 (1994).
- A.Popov, O.Tikhonova, and E.Volkova, J.Phys.B 32, 3331 (1999).
- M. Kolesik, J.M. Brown, A. Teleki, P. Jakobsen, J.V. Moloney, and E.M. Wright, Optica 1, 323 (2014).
- A. Bogatskaya, E. Volkova, and A. Popov, Europhys. Lett. 116, 14003 (2016).
- J. Cooley, Math.Comp. 15, 363 (1961).
- J. F. Van der Maelen Ur´ıa, S. Garc´ıa-Granda, and A. Men´endez-Vel´azquez, Amer. J.Phys. 64, 3 (1996).
- R. Kosloff and H. Tal-Ezer, Chem.Phys. Lett. 127, 223 (1986).
- M. Feit, J. Fleck, Jr., and A. Steiger, J.Comput.Phys. 47, 412 (1982).
- Р.П. Федоренко. Введение в вычислительную физику: Учебное пособие для вузов, под ред. А.И. Лобанова, Издательский дом «Интеллект», Долгопрудный (2008).
- X. Antoine, A. Arnold, C. Besse, M. Ehrhardt, and A. Sch¨adle, Commun.Comput.Phys. 4, 729 (2008).
- X. Antoine, C. Besse, M. Ehrhardt, and P. Klein, Modeling Boundary Conditions for Solving Stationary Schr¨odinger Equations, Preprint 10/04 of the Chairs of Applied Mathematics & Numerical Analysis and Optimization and Approximation, University of Wuppertal, February (2010).
- M. Nurhuda and A. Rouf, Phys.Rev.E 96, 033302 (2017).
- Л.Д. Ландау, Е.М. Лифшиц, Квантовая механика: Нерелятивистская теория, Наука, Москва (1989).
- Н. Врублевская, Д.Шипило, И. Николаева, H. Панов, O. Косарева, Письма в ЖЭТФ 117, 400 (2023).
Қосымша файлдар
