Application of mimetic analogs for the preparation of a bioinorganic sorbent modified with imprinted proteins
- Authors: Presnyakov K.Y.1, Ilyicheva P.M.1, Tsyupka D.V.1, Menyaylo I.E.1, Burmistrova N.A.1, Pidenko P.S.1
-
Affiliations:
- N.G. Chernyshevsky Saratov State University, Institute of Chemistry
- Issue: Vol 80, No 10 (2025)
- Pages: 1045-1055
- Section: ORIGINAL ARTICLES
- Submitted: 06.10.2025
- URL: https://bakhtiniada.ru/0044-4502/article/view/318321
- DOI: https://doi.org/10.7868/S3034512X25100032
- ID: 318321
Cite item
Abstract
A method has been developed for obtaining a specific bioinorganic sorbent based on silicon dioxide (IV) particles modified with an imprinted protein (IP). Bovine serum albumin was used as the template protein molecule. The imprinting was carried out in the presence of a series of template molecules – coumarin, 4-hydroxycoumarin, quercetin, and 5,7-dimethoxycoumarin –which act as mimetic analogs of the mycotoxin zearalenone. To preliminarily assess the possibility of substituting zearalenone with mimetic analogs and to select the optimal template molecule concentrations during IP preparation, computational chemistry methods were used (molecular docking and molecular dynamics). The need for prior surface modification of the silicon dioxide (IV) particles to produce sorbents based on IPs was demonstrated. The potential application of the resulting bioinorganic sorbents for solid-phase extraction of template molecules from model solutions was validated for coumarin (Q = 2.0 mg/g), 4-hydroxycoumarin (Q = 1.2 mg/g), quercetin (Q = 0.8 mg/g), 5,7-dimethoxycoumarin (Q = 2.2 mg/g), and for zearalenone (ZEA) from wheat extract (Q = 4.79 mg/g, IF = 2.45). Sorption isotherms were constructed for ZEA on the IP-modified sorbents obtained using different mimetic analogs. Cytotoxicity of the IPs was studied, and biosafety was assessed using the AGREEMIP tool.
About the authors
K. Yu. Presnyakov
N.G. Chernyshevsky Saratov State University, Institute of Chemistry
Email: pidenkops@gmail.com
Astrahanskaya St., 83, Saratov, 410012 Russia
P. M. Ilyicheva
N.G. Chernyshevsky Saratov State University, Institute of Chemistry
Email: pidenkops@gmail.com
Astrahanskaya St., 83, Saratov, 410012 Russia
D. V. Tsyupka
N.G. Chernyshevsky Saratov State University, Institute of Chemistry
Email: pidenkops@gmail.com
Astrahanskaya St., 83, Saratov, 410012 Russia
I. E. Menyaylo
N.G. Chernyshevsky Saratov State University, Institute of Chemistry
Email: pidenkops@gmail.com
Astrahanskaya St., 83, Saratov, 410012 Russia
N. A. Burmistrova
N.G. Chernyshevsky Saratov State University, Institute of Chemistry
Email: pidenkops@gmail.com
Astrahanskaya St., 83, Saratov, 410012 Russia
P. S. Pidenko
N.G. Chernyshevsky Saratov State University, Institute of Chemistry
Author for correspondence.
Email: pidenkops@gmail.com
Astrahanskaya St., 83, Saratov, 410012 Russia
References
- Narvaez A., Castaldo L., Izzo L., Pallares N., Rodriguez-Carrasco Y., Ritieni A. Deoxynivalenol contamination in cereal-based foodstuffs from Spain: Systematic review and meta-analysis approach for exposure assessment // Food Control. 2022. V. 132. Article 108521. https://doi.org/10.1016/j.foodcont.2021.108521
- Khaneghah A.M., Fakhri Y., Raeisi S., Armoon B., Sant'Ana A.S. Prevalence and concentration of ochratoxin A, zearalenone, deoxynivalenol and total aflatoxin in cereal-based products: A systematic review and meta-analysis // Food Chem. Toxicol. 2018. V. 118. P. 830. https://doi.org/10.1016/j.fct.2018.06.037
- Ullah S., Ali S., Rezende V.T., Nabi G., Tonin F.G., de Oliveira C.A.F. Global occurrence and levels of mycotoxins in infant foods: A systematic review (2013–2024) // Food Control. 2025. V. 171. Article 111135. https://doi.org/10.1016/j.foodcont.2025.111135
- Tam J., Mankotia M., Mably M., Pantazopoulos P., Neil R.J., Calwa P., Scott P.M. Survey of breakfast and infant cereals for aflatoxins B1, B2, G1 and G2 // Food Addit. Contam. 2006. V. 23. № 7. P. 693. https://doi.org/10.1080/02652030600627230
- Технический регламент Таможенного союза “О безопасности зерна” (ТР ТС 015/2011) clck.ru/33utzE (дата обращения 13.03.2025).
- Li X., Wang M.Y., Wang Y., Yang W.Z., Yang C.X. Fabrication of amino- and hydroxyl dual-functionalized magnetic microporous organic network for extraction of zearalenone from traditional Chinese medicine prior to the HPLC determination // J. Chromatogr. A. 2024. V. 1724. Article 464915. https://doi.org/10.1016/j.chroma.2024.464915
- Zhang B., Liu W., Liu Z., Fu X., Du, D. High-performance liquid chromatography for the sensitive zearalenone determination by the automated immunomagnetic beads purifier for one-step sample pre-treatment // Eur. Food Res. Technol. 2022. V. 248. № 1. P. 109. https://doi.org/10.1007/s00217-021-03862-3
- Fu H., Xu W., Wang H., Liao S., Chen, G. Preparation of magnetic molecularly imprinted polymers for the identification of zearalenone in grains // Anal. Bioanal. Chem. 2020. V. 412. № 19. P. 4725. https://doi.org/10.1007/s00216-020-02729-y
- Diab M.A., El-Sabban H.A., Baek K.-H. Recent advances in zearalenone clean-up approaches from polluted food and feed: A mini-review of the State-of-the-art developments // Microchem. J. 2024. V. 207. Article 112182. https://doi.org/10.1016/j.microc.2024.112182
- Song L., Zhang J., Wang M., Huang Z., Zhang Y., Zhang X., Liang Yu., He J. Simultaneously selective separation of zearalenone and four aflatoxins from rice samples using co-pseudo-template imprinted polymers with MIL-101(Cr)-NH2 as core // J. Chromatogr. Sci. 2024. V. 62. № 9. P. 892. https://doi.org/10.1093/chromsci/bmae041
- Hu M., Ge W., Liu X., Zhu Y. Preconcentration and determination of zearalenone in corn oil by a one-step prepared polydopamine-based magnetic molecularly imprinted polymer (MIP) with high-performance liquid chromatography with fluorescence (HPLC-FLD) detection // Anal. Lett. 2022. V. 55. № 3. P. 343. https://doi.org/10.1080/00032719.2021.1931268
- Calahorra-Rio L., Guadaño-Sánchez M., Moya-Cavas T., Urraca, J.L. Magnetic core-shell nanoparticles using molecularly imprinted polymers for zearalenone determination // Molecules. 2022. V. 27. № 23. Article 8166. https://doi.org/10.3390/molecules27238166
- Fu H., Liu J., Xu W., Wang H., Liao S., Chen G. A new type of magnetic molecular imprinted material combined with β-cyclodextrin for the selective adsorption of zearalenone // J. Mater. Chem. B. 2020. V. 8. № 48. P. 10966. https://doi.org/10.1039/D0TB02146F
- Gutierrez R.A.V., Hedström M., Mattiasson B. Bioimprinting as a tool for the detection of aflatoxin B1 using a capacitive biosensor // Biotechnol. Rep. 2016. V. 11. P. 12. https://doi.org/10.1016/j.btre.2016.05.006
- Sakamoto S., Minami K., Nuntawong P., Yusakul G., Putalun W., Tanaka H., Fujii S., Morimoto S. Bioimprinting as a Receptor for Detection of Kwakhurin // Biomolecules. 2022. V. 12. № 8. Article 1064. https://doi.org/10.3390/biom12081064
- Пиденко П.С., Пресняков К.Ю., Дрозд Д.Д., Бурмистрова Н.А. Селективные сорбенты на основе импринтированной глюкозооксидазы // Журн. аналит. химии. 2023. Т. 78. № 9. С. 807. (Pidenko P.S., Presnyakov K.Y., Drozd D.D., Burmistrova N.A. Selective adsorbents based on imprinted glucose oxidase // J. Anal. Chem. 2023. V. 78. № 9. P. 1146. https://doi.org/10.1134/S1061934823090101)
- Marć M., Wojnowski W., Pena-Pereira F., Tobiszewski M., Martín-Esteban A. AGREEMIP: The analytical greenness assessment tool for molecularly imprinted polymers synthesis // ACS Sustain. Chem. Eng. 2024. V. 12. № 33. P. 12516. https://doi.org/10.1021/acssuschemeng.4c03874
- Ilicheva P.M., Fedotova E.S., Presnyakov K.Y., Grinev V.S., Pidenko P.S., Burmistrova N.A. Theoretical design of imprinted albumin against foodborne toxins // Mol. Syst. Des. Eng. 2024. V. 9. № 5. P. 456. https://doi.org/10.1039/D3ME00179B
- Morris G.M., Huey R., Lindstrom W., Sanner M.F., Belew R.K., Goodsell D.S., Olson A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility // J. Comput. Chem. 2009. V. 30. № 16. P. 2785. https://doi.org/10.1002/jcc.21256
- Hess B., Kutzner C., Van Der Spoel D., Lindahl E. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation // J. Chem. Theory Comput. 2008. V. 4. № 3. P. 435. https://doi.org/10.1021/ct700301q
- Beloglazova N., Lenain P., Tessier M., Goryacheva I., Hens, Z., De Saeger S. Bioimprinting for multiplex luminescent detection of deoxynivalenol and zearalenone // Talanta. 2019. V. 192. P. 169. https://doi.org/10.1016/j.talanta.2018.09.042
- Pidenko P., Zhang H., Lenain P., Goryacheva I., De Saeger, S., Beloglazova N. Imprinted proteins as a receptor for detection of zearalenone // Anal. Chim. Acta. 2018. V. 1040. P. 99. https://doi.org/10.1016/j.aca.2018.07.062
- Drozd D.D., Byzova N.A., Pidenko P.S., Tsyupka D.V., Strokin P.D., Goryacheva O.A., Zherdev A.V., Goryacheva I.Yu. Dzantiev B.B. Luminescent alloyed quantum dots for turn-off enzyme-based assay // Anal. Bioanal. Chem. 2022. V. 414. № 15. P. 4471. https://doi.org/10.1007/s00216-022-04016-4
- Lucci P., Derrien D., Alix F., Pérollier, C., Bayoudh, S. Molecularly imprinted polymer solid-phase extraction for detection of zearalenone in cereal sample extracts // Anal. Chim. Acta. 2010. V. 672. № 1. P. 15. https://doi.org/10.1016/j.aca.2010.03.010
- Presnyakov K.Y., Ilicheva P.M., Tsyupka D.V., Khudina E.A., Pozharov M.V., Pidenko P.S., Burmistrova N.A. Dummy-template imprinted bovine serum albumin for extraction of zearalenone // Mikrochim. Acta. 2024. V. 191. № 12. P. 767. https://doi.org/10.1007/s00604-024-06790-7
- PubChem. Quercetin. clck.ru/3Ha3cT (дата обращения: 13.03.2025).
Supplementary files
