Methods for the Determination of Toxins and Biologically Active Components of Higher Fungi
- Authors: Aigumov M.S.1, Vishnevskii M.V.2, Novikov A.P.3, Savchuk S.A.4,5
-
Affiliations:
- Noyabrsk Psychoneurological Dispensary
- Center for Innovative Mycological Research
- Surgut Clinical Psychoneurological Hospital
- Association of Specialists in Chemical-Toxicological and Forensic Chemical Analysis
- The Institute of Physical Chemistry and Electrochemistry RAS (IPCE RAS)
- Issue: Vol 80, No 2 (2025)
- Pages: 113-124
- Section: REVIEWS
- Submitted: 04.05.2025
- Accepted: 04.05.2025
- URL: https://bakhtiniada.ru/0044-4502/article/view/290493
- DOI: https://doi.org/10.31857/S0044450225020017
- EDN: https://elibrary.ru/acwtvr
- ID: 290493
Cite item
Abstract
Toxic mushrooms can be categorized into different groups depending on their constituents: cyclopeptides, hyromitrin, muscarine, isoxazoles (muscimol, ibotenic acid), orellanin, psilocybin and gastrointestinal irritants. Mushrooms containing cyclopeptides are the most toxic species worldwide and are responsible for 90–95% of human deaths. Rapid and accurate identification of toxins in mushrooms and biological samples is critical for the diagnosis and treatment of mushroom poisoning. Methods for toxin identification are essential to ensure timely treatment. This review presents an analysis of the scientific literature on the determination of mushroom toxins in mushroom and biological samples. Particular attention is paid to chromatographic methods, in particular high-performance liquid chromatography coupled with mass spectrometry.
About the authors
M. Sh. Aigumov
Noyabrsk Psychoneurological Dispensary
Author for correspondence.
Email: aygumov.m@yandex.ru
Russian Federation, Noyabrsk
M. V. Vishnevskii
Center for Innovative Mycological Research
Email: aygumov.m@yandex.ru
Russian Federation, Moscow
A. P. Novikov
Surgut Clinical Psychoneurological Hospital
Email: aygumov.m@yandex.ru
Russian Federation, Surgut
S. A. Savchuk
Association of Specialists in Chemical-Toxicological and Forensic Chemical Analysis; The Institute of Physical Chemistry and Electrochemistry RAS (IPCE RAS)
Email: aygumov.m@yandex.ru
Russian Federation, St. Petersburg; Moscow
References
- Karlson-Stiber C., Persson H. Cytotoxic fungi – An overview// Toxicon. 2003. V. 42. № 4. P. 339.
- Vetter J. Toxins of Amanita phalloides // Toxicon. 1998. V. 36. № 1. P. 13.
- Baumann K., Münter K., Faulstich H. Identification of structural features involved in binding of alpha-amanitin to a monoclonal antibody // Biochemistry. 1993. V. 32. № 15. P. 4043.
- Garcia J., Costa V.M., Carvalho A., Baptista P., de Pinho P.G., de Lourdes Bastos M., Carvalho F. Amanita phalloides poisoning: Mechanisms of toxicity and treatment // Food Chem. Toxicol. 2015. V. 86. P. 41.
- Barbosa I., Domingues C., Ramos F., Barbosa R.M. Analytical methods for amatoxins: A comprehensive review // J. Pharm. Biomed. Anal. 2023. V. 232. 115421.
- Jaeger A., Jehl F., Flesch F., Sauder P., Kopferschmitt J. Kinetics of amatoxins in human poisoning – therapeutic implications // J. Toxicol. Clin. Toxicol. 1993. V. 31. P. 63.
- Helfer A.G., Meyer M.R., Michely J.A., Maurer H.H. Direct analysis of the mushroom poisons α- and β-amanitin in human urine using a novel on-line turbulent flow chromatography mode coupled to liquid chromatography-high resolution-mass spectrometry/mass spectrometry // J. Chromatogr. A. 2014. V. 1325. P. 92.
- Jehl F., Gallion C., Birckel P., Jaeger A., Flesch F., Minck R. Determination of α-amanitin and β-amanitin in human biological fluids by high-performance liquid chromatography // Anal. Biochem. 1985. V. 149. № 1. P. 35.
- Abbott N.L., Hill K.L., Garrett A., Carter M.D., Hamelin E.I., Johnson R.C. Detection of α-, β-, and γ-amanitin in urine by LC-MS/MS using 15N10-α-amanitin as the internal standard // Toxicon. 2018. V. 152. P. 71.
- Tanahashi M., Kaneko R., Hirata Y., Hamajima M. Simple analysis of α-amanitin and β-amanitin in human plasma by liquid chromatography-mass spectrometry // Forensic Toxicol. 2010. V. 28. № 2. P. 110.
- Tomková J., Ondra P., Válka I. Simultaneous determination of mushroom toxins α-amanitin, β-amanitin and muscarine in human urine by solid-phase extraction and ultra-high-performance liquid chromatography coupled with ultra-high-resolution TOF mass spectrometry // Forensic Sci. Int. 2015.V. 251. P. 209.
- Gicquel T., Lepage S., Fradin M., Tribut O., Duretz B., Morel I. Amatoxins (α- and β-Amanitin) and phallotoxin (Phalloidin) analyses in urines using high-resolution accurate mass LC-MS technology // J. Anal. Toxicol. 2014. V. 38. № 6. P. 335.
- Nomura M., Suzuki Y., Kaneko R., Ogawa T., Hattori H., Seno H., Ishii A. Simple and rapid analysis of amatoxins using UPLC–MS–MS // Forensic Toxicol. 2012. V. 30. P. 185.
- Gonmori K., Minakata K., Suzuki M., Yamagishi I., Nozawa H., Hasegawa K. et al. MALDI-TOF mass spectrometric analysis of α-amanitin, β-amanitin, and phalloidin in urine // Forensic Toxicol. 2012. V. 30. P. 179.
- Leite M., Freitas A., Azul A.M., Barbosa J., Costa S., Ramos F. Development, optimization and application of an analytical methodology by ultra performance liquid chromatography-tandem mass spectrometry for determination of amanitins in urine and liver samples // Anal. Chim. Acta. 2013. V. 799. P. 77. https://doi.org/10.1016/j.aca.2013.08.044
- Li C., Qian H., Bao T., Yang G., Wang S., Liu X. Simultaneous identification and characterization of amanita toxins using liquid chromatography-photodiode array detection-ion trap and time-of-flight mass spectrometry and its applications // Toxicol. Lett. 2018. V. 296. P. 95. https://doi.org/10.1016/j.toxlet.2018.08.005
- Bambauer T.P., Wagmann L., Weber A.A., Meyer M.R. Analysis of α- and β-amanitin in human plasma at subnanogram per milliliter levels by reversed phase ultra-high performance liquid chromatography coupled to orbitrap mass spectrometry // Toxins (Basel). 2020. V. 12. № 11. P. 671.
- Filigenzi M.S., Poppenga R.H., Tiwary A.K., Puschner B. Determination of alpha-amanitin in serum and liver by multistage linear ion trap mass spectrometry // J. Agric. Food Chem. 2007. V. 55. № 8. P. 2784. https://doi.org/10.1021/jf063194w
- Ahmed W.H.A., Gonmori K., Suzuki M., Watanabe K., Suzuki O. Simultaneous analysis of α-amanitin, β-amanitin, and phalloidin in toxic mushrooms by liquid chromatography coupled to time-of-flight mass spectrometry // Forensic Toxicol. 2010. V. 28. P. 69.
- Yoshioka N., Akamatsu S., Mitsuhashi T., Todo C., Asano M., Ueno Y. A simple method for the simultaneous determination of mushroom toxins by liquid chromatography–time-of-flight mass spectrometry // Forensic Toxicol. 2014. V. 32. P. 89.
- Zhang S., Zhao Y., Li H., Zhou S., Chen D., Zhang Y., Yao Q., Sun C. A simple and high-throughput analysis of amatoxins and phallotoxins in human plasma, serum and urine using UPLC-MS/MS combined with PRiME HLB μ elution platform // Toxins (Basel). 2016. V. 8. № 5. P. 128. https://doi.org/10.3390/toxins8050128
- Vujovic M., Ilic I., Kilibarda V. Determination of mushroom toxin alpha-amanitin in serum by liquid chromatography-mass spectrometry after solid-phase extraction// Acta Med. Medianae. 2015. V. 54. № 1. P. 12.
- Meixner A. Amatoxin detection in fungi // Zeitschrift fur Mykologie. 1979. V. 45. № 1. P. 137.
- Butera R., Locatelli C., Coccini T., Manzo L. Diagnostic accuracy of urinary amanitin in suspected mushroom poisoning: A pilot study// J. Toxicol. Clin. Toxicol. 2004. V. 42. № 6. P. 901.
- Brüggemann O., Meder M., Freitag R. Analysis of amatoxins alpha-amanitin and beta-amanitin in toadstool extracts and body fluids by capillary zone electrophoresis with photodiode array detection // J. Chromatogr. A. 1996. V. 744. № 1-2. P. 167.
- Staack R., Maurer H. New Buhlmann ELISA for determination of amanitins in urine-are there false positive results due to interferences with urine matrix, drugs or their metabolites // Toxichem Krimtech. 2000. V. 68. P. 68.
- Bever C.S., Swanson K.D., Hamelin E.I., Filigenzi M., Poppenga R.H., Kaae J. et al. Rapid, sensitive, and accurate point-of-care detection of lethal amatoxins in urine // Toxins (Basel). 2020. V. 12. № 2. P. 123.
- Dorizzi R., Michelot D., Tagliaro F., Ghielmi S. Methods for chromatographic determination of amanitins and related toxins in biological samples // J. Chromatogr.1992. V. 580. P. 279.
- Beutler J., Marderosian A.H.D. Chemical variation in Amanita // J. Nat. Prod. 1981. V. 44. P. 422.
- Enjalbert F., Gallion C., Jehl F., Monteil H., Faulstich H. Simultaneous assay for amatoxins and phallotoxins in Amanita phalloides Fr. by high-performance liquid chromatography // J. Chromatogr. A. 1992. V. 598. № 2. P. 227.
- Rieck W., Platt D. High-performance liquid chromatographic method for the determination of alpha-amanitin and phalloidin in human plasma using the column-switching technique and its application in suspected cases of poisoning by the green species of amanita mushroom (Amanita phalloides) // J. Chromatogr. 1988. V. 425. № 1. P. 121.
- Tagliaro F., Schiavon G., Bontempelli G., Carli G., Marigo M. Improved high-performance liquid chromatographic determination with amperometric detection of alpha-amanitin in human plasma based on its voltammetric study // J. Chromatogr. 1991. V. 563. № 2. P. 299.
- Chung W.C., Tso S.C., Sze S.T. Separation of polar mushroom toxins by mixed-mode hydrophilic and ionic interaction liquid chromatography-electrospray ionization-mass spectrometry // J. Chromatogr. Sci. 2007. V. 45. № 2. P. 104. https://doi.org/10.1093/chromsci/45.2.104
- Leite M., Freitas A., Mitchell T., Barbosa J., Ramos F. Amanitin determination in bile samples by UHPLC-MS: LR-MS and HR-MS analytical performance // J. Pharm. Biomed. Anal. 2024. V. 247. 116253.
- Maurer H.H., Schmitt C.J., Weber A.A., Kraemer T. Validated electrospray liquid chromatographic-mass spectrometric assay for the determination of the mushroom toxins alpha- and beta-amanitin in urine after immunoaffinity extraction // J. Chromatogr. B: Biomed. Sci. Appl. 2000.V. 748. № 1. P. 125.
- Cevik Y.N. The effect of a high-resolution accurate mass spectrometer on simultaneous multiple mushroom toxin detection // GÜFBED/GUSTIJ. 2020. V. 10. № 4. P. 878. https://doi.org/10.17714/gumusfenbil.680816
- Ogawa T., Zaitsu K., Kokaji T., Suga K., Kondo F., Iwai M. et al. Development and application of a forensic toxicological library for identification of 56 natural toxic substances by liquid chromatography–quadrupole time-of-flight mass spectrometry // Forensic Toxicol. 2020. V. 38. P. 232.
- Feigel В., Zuba A., Lechowicz W. Screening method for the analysis of blood and urine for the presence of naturally occurring toxic compounds from mushrooms (fungi) using the LC-MS method // Probl. Forensic Sci. 2022. V. 126, 127. P. 137.
- Zhang X., Cai X., Zhang X., Li R., Zhao Y. Highly sensitive determination of three kinds of amanitins in urine and plasma by ultra-performance liquid chromatography-triple quadrupole mass spectrometry coupled with immunoaffinity column clean-up // Chin. J. Chromatogr. 2022. V. 40. № 5. P. 443.
- Xu X., Zhang J., Cai Z., Meng Z., Huang B., Chen Q. Determination of trace α-amanitin in urine of mushroom poisoning patient by online solid phase extraction-liquid chromatography-tandem mass spectrometry // Chin. J. Chromatogr. 2020. V. 38. № 11. P. 1281.
- Rittgen J., Pütz M., Pyell U. Identification of toxic oligopeptides in Amanita fungi employing capillary electrophoresis-electrospray ionization-mass spectrometry with positive and negative ion detection // Electrophoresis. 2008. V. 29. P. 2094.
- Robinson-Fuentes V.A., Jaime-Sánchez J.L., García-Aguilar L., Gómez-Peralta M., Vázquez-Garcidueñas M.S., Vázquez-Marrufo G. Determination of alpha- and beta-amanitin in clinical urine samples by capillary zone electrophoresis // J. Pharm. Biomed. Anal. 2008.V. 47. № 4-5. P. 913.
- Cortese M., Gigliobianco M.R., Magnoni F., Censi R., Di Martino P.D. Compensate for or minimize matrix effects, strategies for overcoming matrix effects in liquid chromatography-mass spectrometry technique: A tutorial review // Molecules. 2020. V. 25. № 13. P. 3047.
- Waser P.G., The pharmacology of Amanita muscaria // Psychopharmacol. Bull. 1967. V. 4. № 3. P. 19.
- Eugster CH., Isolation, structure, and syntheses of central-active compounds from Amanita muscaria (L. ex Fr.) hooker. // Psychopharmacol. Bull. 1967. V. 4. № 3. P. 18.
- Michelot D., Melendez-Howell L.M., Amanita muscaria: chemistry, biology, toxicology, and ethnomycology // Mycol. Res. 2003. V. 107. № 2. P. 131.
- Filer C.N., Lacy J.M., Peng C.T. Ibotenic acid decarboxylation to muscimol: Dramatic solvent and radiolytic rate acceleration // Synth. Commun. 2005. V. 35. P. 967.
- Tsujikawa K., Kuwayama K., Miyaguchi H., Kanamori T., Iwata Y., Inoue H. et al. Determination of muscimol and ibotenic acid in Amanita mushrooms by high-performance liquid chromatography and liquid chromatography-tandem mass spectrometry // J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 2007. V. 852. № 2. P. 430.
- Tsujikawa K., Mohri H., Kuwayama K., Miyaguchi H., Iwata Y., Gohda A. et al. Analysis of hallucinogenic constituents in Amanita mushrooms circulated in Japan // Forensic Sci. Int. 2006. V. 164. P. 172.
- Tsunoda K., Inoue N., Aoyagi Y., Sugahara T. Simultaneous analysis of ibotenic acid and muscimol in toxic mushroom, amanita muscaria, and analytical survey on edible mushrooms // Shokuhin Eiseigaku Zasshi. 1993. V. 34. № 1. P. 12.
- Stříbrný J., Sokol M., Merová B., Ondra P. GC/MS determination of ibotenic acid and muscimol in the urine of patients intoxicated with Amanita pantherina // Int. J. Legal. Med. 2012. V. 126. № 4. P. 519.
- Benedict R.G., Tyler V.E., Brady L.R. Chematoxanomic significance of isoxazole derivatives in Amanita species // Lloydia. 1966. V. 29. P. 333.
- Hasegawa K., Gonmori K., Fujita H., Kamijo Y., Nozawa H., Yamagishi I. et al. Determination of ibotenic acid and muscimol, the Amanita mushroom toxins, in human serum by liquid chromatography–tandem mass spectrometry // Forensic Toxicol. 2013. V. 31. P. 322.
- Merova B., Ondra P., Stankova M., Valka I. Isolation and identification of the Amanita muscaria and Amanita pantherina toxins in human urine // Neuroendocrinol. Lett. 2008. V. 29. № 5. P. 744.
- Ginterová P., Sokolová B., Ondra P., Znaleziona J., Petr J., Ševčík J., Maier V. Determination of mushroom toxins ibotenic acid, muscimol and muscarine by capillary electrophoresis coupled with electrospray tandem mass spectrometry // Talanta. 2014. V. 125. P. 242.
- Xu X.M., Zhang J.S., Huang B.F., Han J.L., Chen Q. Determination of ibotenic acid and muscimol in plasma by liquid chromatography-triple quadrupole mass spectrometry with bimolecular dansylation // J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 2020. V. 1146. P. 122. https://doi.org/10.1016/j.jchromb.2020.122128
- Rickli A., Moning O.D., Hoener M.C., Liechti M.E. Receptor interaction profiles of novel psychoactive tryptamines compared with classic hallucinogens // Eur. Neuropsychopharmacol. 2016. V. 26. № 8. P. 1327.
- Hasler F., Bourquin D., Brenneisen R., Bär T., Vollenweider F.X. Determination of psilocin and 4-hydroxyindole-3-acetic acid in plasma by HPLC-ECD and pharmacokinetic profiles of oral and intravenous psilocybin in man // Pharm. Acta Helv. 1997. V. 72. № 3. P. 175. https://doi.org/10.1016/s0031-6865(97)00014-9
- Björnstad K., Beck O., Helander A. A multi-component LC–MS/MS method for detection of ten plant-derived psychoactive substances in urine // J. Chromatogr. B. 2009. V. 877. P. 1162.
- Grieshaber A.F., Moore K.A., Levine B. The detection of psilocin in human urine // J. Forensic Sci. 2001. V. 46. № 3. P. 627.
- Kamata T., Nishikawa M., Katagi M., Tsuchihashi H. Optimized glucuronide hydrolysis for the detection of psilocin in human urine samples // J. Chromatogr. B. 2003. V. 796. P. 421.
- Sticht G., Käferstein H. Detection of psilocin in body fluids // Forensic Sci. Int. 2000. V. 113. P. 403.
- Lindenblatt H., Krämer E., Holzmann-Erens P., Gouzoulis-Mayfrank E., Kovar K.A. Quantitation of psilocin in human plasma by high-performance liquid chromatography and electrochemical detection: comparison of liquid–liquid extraction with automated on-line solid-phase extraction // J. Chromatogr. B: Biomed. Sci. Appl. 1998. V. 709. P. 255.
- Kolaczynska K.E., Liechti M.E., Duthaler U. Development and validation of an LC-MS/MS method for the bioanalysis of psilocybin’s main metabolites, psilocin and 4-hydroxyindole-3-acetic acid, in human plasma // J. Chromatogr. B. 2021. V. 1164. 122486.
- Brown R.T., Nicholas C.R., Cozzi N.V., Gassman M.C., Cooper K.M., Muller D. et al. Pharmacokinetics of escalating doses of oral psilocybin in healthy adults // Clin. Pharmacokinet. 2017. V. 56. № 12. P. 1543.
- Elian A.A., Hackett J., Telepchak M.J. Analysis of psilocybin and psilocin in urine using SPE and LC-tandem mass spectrometry // LCGC North Am. 2011.V. 29. № 9. P. 854.
- Martin R., Schürenkamp J., Pfeiffer H., Köhler H. A validated method for quantitation of psilocin in plasma by LC-MS/MS and study of stability // J. Leg. Med. 2012. V. 126. № 6. P. 845. https://doi.org/10.1007/s00414-011-0652-8
Supplementary files
