Low-Temperature N2 and He Separation on a HKUST-1 Membrane

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Technologies of membrane-based gas separation can be integrated into existing industrial processes for low-temperature helium recovery from natural gas at the stages of crude helium separation from the N2/He mixture and its purification. The effectiveness of these processes is most affected by the properties of the materials from which the membrane is made. Due to their unique properties, metal-organic framework are promising materials for use in gas separation. In the present work, both the Monte Carlo and equilibrium molecular dynamics methods were employed to examine the temperature dependence of membrane selectivity and nitrogen permeability for separation of an equimolar mixture of N2 and He by a HKUST-1-based membrane at a pressure drop of 0.1, 0.3, and 1 MPa. It was shown that the selection of optimal temperature conditions made it possible to obtain a significant increase in membrane selectivity and permeability for nitrogen compared to corresponding parameters at room temperature.

Sobre autores

I. Grenev

Novosibirsk State University; Boreskov Institute of Catalysis

Email: greneviv@catalysis.ru
630090, Novosibirsk, Russia; 630090, Novosibirsk, Russia

V. Gavrilov

Boreskov Institute of Catalysis

Autor responsável pela correspondência
Email: greneviv@catalysis.ru
630090, Novosibirsk, Russia

Bibliografia

  1. Rufford T.E. et al. // Adsorpt. Sci. Technol. 2014. V. 32. № 1. P. 49–72.
  2. Scholes C.A., Ghosh U. // J. Membr. Sci. 2016. V. 520. P. 221–230.
  3. Dai Z. et al. // Sep. Purif. Technol. 2021. V. 274. P. 119044.
  4. Scholes C.A. // Ind. Eng. Chem. Res. 2018. V. 57. № 10. P. 3792–3799.
  5. Alders M., Winterhalder D., Wessling M. // Sep. Purif. Technol. 2017. V. 189. P. 433–440.
  6. Moghadam P.Z. et al. // Chem. Mater. 2017. V. 29. № 7. P. 2618–2625.
  7. Chung Y.G. et al. // J. Chem. Eng. Data. 2019. V. 64. № 12. P. 5985–5998.
  8. Altintas C. et al. // ACS Appl. Mater. Interfaces. 2018. V. 10. № 20. P. 17257–17268.
  9. Altintas C. et al. // J. Mater. Chem. A. 2019. V. 7. № 16. P. 9593–9608.
  10. Solanki V.A., Borah B. // J. Phys. Chem. C. 2020. V. 124. № 8. P. 4582–4594.
  11. Zarabadi-Poor P., Marek R. // J. Phys. Chem. C. 2019. V. 123. № 6. P. 3469–3475.
  12. Daglar H., Keskin S. // Adv. Theory Simul. 2019. V. 2. № 11. P. 1900109.
  13. Budhathoki S. et al. // Energy Environ. Sci. 2019. V. 12. № 4. P. 1255–1264.
  14. Grenev I.V., Gavrilov V.Yu. // Molecules. 2022. V. 28. № 1. P. 20.
  15. Ye P. et al. // AIChE J. 2016. V. 62. № 8. P. 2833–2842.
  16. Yu L. et al. // J. Membr. Sci. 2022. V. 644. P. 120113.
  17. Chui S.S. // Science. 1999. V. 283. № 5405. P. 1148–1150.
  18. Cao F. et al. // Ind. Eng. Chem. Res. 2012. V. 51. № 34. P. 11274–11278.
  19. Lu C. et al. // Materials. 2018. V. 11. № 7. P. 1207.
  20. Guo Y. et al. // Chemistry Select. 2016. V. 1. № 1. P. 108–113.
  21. Mayo S.L., Olafson B.D., Goddard W.A. // J. Phys. Chem. 1990. V. 94. № 26. P. 8897–8909.
  22. Rappe A.K. et al. // J. Am. Chem. Soc. 1992. V. 114. № 25. P. 10024–10035.
  23. Potoff J.J., Siepmann J.I. // AIChE J. 2001. V. 47. № 7. P. 1676–1682.
  24. Hirschfelder J.O., Curtiss C.F., Bird R.B. Molecular theory of gases and liquids. New York: Wiley, 1954. 1219 p.
  25. Nazarian D., Camp J.S., Sholl D.S. // Chem. Mater. 2016. V. 28. № 3. P. 785–793.
  26. Nazarian D. et al. // Chem. Mater. 2017. V. 29. № 6. P. 2521–2528.
  27. Dubbeldam D. et al. // Mol. Simul. 2016. V. 42. № 2. P. 81–101.
  28. Krishna R., van Baten J.M. // J. Membr. Sci. 2010. V. 360. № 1–2. P. 323–333.
  29. Sava Gallis D.F. et al. // Chem. Mater. 2015. V. 27. № 6. P. 2018–2025.
  30. Chowdhury P. et al. // Microporous Mesoporous Mater. 2009. V. 117. № 1–2. P. 406–413.
  31. Span R. et al. // J. Phys. Chem. Ref. Data. 2000. V. 29. № 6. P. 1361–1433.
  32. Vaezi M.J. et al. // Current Trends and Future Developments on (Bio-) Membranes. Elsevier, 2019. P. 185–203.
  33. Handbook of Membrane Separations: Chemical, Pharmaceutical, Food, and Biotechnological Applications. 0 ed. / ed. Pabby A.K., Rizvi S.S.H., Requena A.M.S. CRC Press, 2008.
  34. Zito P.F. et al. // J. Membr. Sci. 2018. V. 564. P. 166–173.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (40KB)
3.

Baixar (386KB)

Declaração de direitos autorais © И.В. Гренев, В.Ю. Гаврилов, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».