Clinical signs and laboratory tests for the differential diagnosis ofandrogenic and post-COVID-19 alopecia in women
- Authors: Kondrakhina I.N.1, Kondrakhin A.A.2, Nikonorov A.A.1, Nikonorova E.R.1,3, Deryabin D.G.1, Kubanov A.A.1
-
Affiliations:
- State Research Center of Dermatovenereology and Cosmetology
- Moscow State University of Medicine
- All-Russian Research Institute of Medicinal and Aromatic Plants
- Issue: Vol 100, No 4 (2024)
- Pages: 42-50
- Section: ORIGINAL STUDIES
- URL: https://bakhtiniada.ru/0042-4609/article/view/263386
- DOI: https://doi.org/10.25208/vdv16778
- ID: 263386
Cite item
Full Text
Abstract
Background. The most common type of pathological hair loss in women is androgenetic alopecia (AGA), arises due to hormonal and micronutrient imbalances. During the COVID-19 epidemic, there has been an increase in the number of female patients with alopecia as a complication, with some individuals experiencing alopecia the sole indication of asymptomatic COVID-19.
Aims. The search for objective criteria for the differential diagnosis of AGA and post-COVID alopecia in women based on trichological and laboratory markers.
Methods. The including criteria for AGA were elevated dihydrotestosterone (DHT) levels, for the post-COVID alopecia — a diagnosis of COVID-19 using RT-PCR and the presence of alopecia symptoms for both conditions. Quantitative characteristics of hairs were analyzed based on trichogram and phototrichogram. Levels of DHT, vitamins B9, B12, D, E, Ca, Fe, Mg, Se, Cu, and Zn were evaluated in serum. CART algorithm (Classification and Regression Trees) was applied to determine criteria to differentiate between patients with androgenetic and post-COVID alopecia.
Results. Analysis revealed the change in telogen/anagen ratio in the androgen-dependent zone in in AGA, and in androgen-dependent (parietal) area in post-COVID. Notably, patients with post-COVID alopecia exhibited elevated DHT levels compared to reference, with no significant difference in comparison to AGA. There was a significant 46.4% reduction in Cu content (p = 0.006) alongside an 24.7% increase in Se levels (p = 0.003) in post-COVID alopecia.
Conclusion. The percent of telogen hair and serum Se level as the objective criteria for the differential diagnosis of AGA and post-COVID alopecia in women are presented.
Full Text
##article.viewOnOriginalSite##About the authors
Irina N. Kondrakhina
State Research Center of Dermatovenereology and Cosmetology
Email: kondrakhina77@gmail.com
ORCID iD: 0000-0003-3662-9954
SPIN-code: 8721-9424
MD, PhD
Russian Federation, 3 bldg 6, Korolenko street, 107076 MoscowAlexey A. Kondrakhin
Moscow State University of Medicine
Email: kondrakhin3@gmail.com
Student
Russian Federation, MoscowAlexandr A. Nikonorov
State Research Center of Dermatovenereology and Cosmetology
Author for correspondence.
Email: nikonorov_all@mail.ru
ORCID iD: 0000-0001-7214-8176
SPIN-code: 3859-7081
Scopus Author ID: 6701729328
доктор медицинских наук, профессор
Russian Federation, 3 bldg 6, Korolenko street, 107076 MoscowEugenia R. Nikonorova
State Research Center of Dermatovenereology and Cosmetology; All-Russian Research Institute of Medicinal and Aromatic Plants
Email: gatiatulinaer@gmail.com
ORCID iD: 0000-0002-6360-2194
SPIN-code: 5392-5170
MD, PhD
Russian Federation, 3 bldg 6, Korolenko street, 107076 Moscow; MoscowDmitry G. Deryabin
State Research Center of Dermatovenereology and Cosmetology
Email: dgderyabin@yandex.ru
ORCID iD: 0000-0002-2495-6694
SPIN-code: 8243-2537
MD, PhD, Professor
Russian Federation, 3 bldg 6, Korolenko street, 107076 MoscowAlexey A. Kubanov
State Research Center of Dermatovenereology and Cosmetology
Email: alex@cnikvi.ru
ORCID iD: 0000-0002-7625-0503
SPIN-code: 8771-4990
MD, PhD, Professor, Academician of the Russian Academy of Sciences
Russian Federation, 3 bldg 6, Korolenko street, 107076 MoscowReferences
- Ramos PM, Miot HA. Female pattern hair loss: a clinical and pathophysiological review. An Bras Dermatol. 2015;90(4):529–543. doi: 10.1590/abd1806-4841.20153370
- Aukerman EL, Jafferany M. The psychological consequences of androgenetic alopecia: A systematic review. J Cosmet Dermatol. 2023;22(1):89–95. doi: 10.1111/jocd.14983
- Starace M, Orlando G, Alessandrini A, Piraccini BM. Female Androgenetic Alopecia: An Update on Diagnosis and Management. Am J Clin Dermatol. 2020;21(1):69–84. doi: 10.1007/s40257-019-00479-x
- Kondrakhina IN, Verbenko DA, Zatevalov AM, Gatiatulina ER, Nikonorov AA, Deryabin DG, et al. A Cross-sectional Study of Plasma Trace Elements and Vitamins Content in Androgenetic Alopecia in Men. Biol Trace Elem Res. 2021:199(9);3232–3241. doi: 10.1007/s12011-020-02468-2
- Nguyen B, Tosti A. Alopecia in patients with COVID-19: A systematic review and meta-analysis. JAAD Int. 2022;7:67–77. doi: 10.1016/j.jdin.2022.02.006
- Guan WJ., Zheng-yi Ni, Yu Hu, Liang WH, Ou CQ, He JX, et al. Clinical characteristic sof coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708–1720. doi: 10.1056/NEJMoa2002032
- Day M. COVID-19: four fifths of cases are asymptomatic, China figures indicate. BMJ. 2020;369:m1375. doi: 10.1136/bmj.m1375
- Czech T, Sugihara S, Nishimura Y. Characteristics of hair loss after COVID-19: A systematic scoping review. J Cosmet Dermatol. 2022;21(9):3655–3662. doi: 10.1111/jocd.15218
- Veskovic D, Ros T, Icin T, Stepanovic K, Janjic N, Kuljancic D, et al. Association of androgenetic alopecia with a more severe form of COVID-19 infection. Ir J Med Sci. 2023;192(1):187–192. doi: 10.1007/s11845-022-02981-4
- Gorji A, Ghadiri MK. Potential roles of micronutrient deficiency and immune system dysfunction in the coronavirus disease 2019 (COVID-19) pandemic. Nutrition. 2021;82:111047. doi: 10.1016/j.nut.2020.111047
- Lookingbill DP, Horton R, Demers LM, Marks JG Jr, Santen RJ. Tissue production of androgens in women with acne. J Am Acad Dermatol. 1985;12(3):481–487. doi: 10.1016/s0190-9622(85)70067-9
- Shiraishi S, Lee PWN, Leung A, Goh VH, Swerdloff RS, Wang C. Simultaneous Measurement of Serum Testosterone and Dihydrotestosterone by Liquid Chromatography-Tandem Mass Spectrometry. Clin Chem. 2008;54(11):1855–1863. doi: 10.1373/clinchem.2008.103846
- Wambier CG, Vaño-Galván S, McCoy J, Gomez-Zubiaur A, Herrera S, Hermosa-Gelbard Á, et al. Androgenetic alopecia present in the majority of hospitalized COVID-19: the “Gabrin sign”. J Am Acad Dermatol. 2020;83(2):680–682. doi: 10.1016/j.jaad.2020.05.079
- Wambier CG, Goren A. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is likely to be androgen mediated. J Am Acad Dermatol. 2020;83(1):308–309. doi: 10.1016/j.jaad.2020.04.032
- Strope JD, Chau CH, Figg WD. Are sex discordant outcomes in COVID-19 related to sex hormones? Semin Oncol. 2020;47(5):335–340. doi: 10.1053/j.seminoncol.2020.06.002
- Sun Q, Hackler J, Hackler J, Gluschke H, Muric A, Simmons S, et al. Selenium and copper as biomarkers for pulmonary arterial hypertension in systemic sclerosis. Nutrients. 2020;12(6):1894. doi: 10.3390/nu12061894
- Schwarz M, Lossow K, Schirl K, Hackler J, Renko K, Kopp JF, et al. Copper interferes with selenoprotein synthesis and activity. Redox Biol. 2020;37:101746. doi: 10.1016/j.redox.2020.101746
- Zhang J, Taylor EW, Bennett K, Saad R, Rayman MP. Association between regional selenium status and reported outcome of COVID-19 cases in China. Am J Clin Nutr. 2020;111(6):1297–1299. doi: 10.1093/ajcn/nqaa095
- Alexander J, Tinkov A, Strand TA, Alehagen U, Skalny A, Aaseth J. Early Nutritional Interventions with Zinc, Selenium and Vitamin D for Raising Anti-Viral Resistance Against Progressive COVID-19. Nutrients. 2020;12(8):2358. doi: 10.3390/nu1208235
- Hoffmann PR, Berry MJ. The influence of selenium on immune responses. Mol Nutr Food Res. 2008;52(11):1273–1280. doi: 10.1002/mnfr.200700330
- Steinbrenner H, Al-Quraishy S, Dkhil MA, Wunderlich F, Sies H. Dietary selenium in adjuvant therapy of viral and bacterial infections. Adv Nutr. 2015;6(1):73–82. doi: 10.3945/an.114.007575
- Guillin OM, Vindry C, Ohlmann T, Chavatte L. Selenium, selenoproteins and viral infection. Nutrients. 2019;11(9):2101. doi: 10.3390/nu11092101
- Zhou B, Gitschier J. hCTR1: a human gene for copper uptake identified by complementation in yeast. Proc Natl Acad Sci U S A. 1997;94(14):7481–7486. doi: 10.1073/pnas.94.14.7481
- van den Berghe PV, Folmer DE, Malingré HE, van Beurden E, Klomp AE, van de Sluis B, et al. Human copper transporter 2 is localized in late endosomes and lysosomes and facilitates cellular copper uptake. Biochem J. 2007;407(1):49–59. doi: 10.1042/BJ20070705
- Dastgheib L, Mostafavi-Pour Z, Abdorazagh AA, Khoshdel Z, Sadati MS, Ahrari I, et al. Comparison of Zn, Cu, and Fe content in hair and serum in alopecia areata patients with normal group. Dermatol Res Pract. 2014;2014:784863. doi: 10.1155/2014/784863
- Skalnaya MG. Copper deficiency a new reason of androgenetic alopecia? In: Atroshi F. (ed.) Pharmacology and nutritional inter vention in the treatment of disease. Ch. 17. Bookson Demand; 2014. P. 337–348. doi: https://doi.org/10.5772/58416
- Кондрахина И.Н., Затевалов А.М., Гатиатулина Е.Р., Никоноров А.А., Дерябин Д.Г., Кубанов А.А. Оценка эффективности персонализированной коррекции микроэлементного и витаминного статуса при консервативной терапии начальных стадий андрогенной алопеции у мужчин. Вестник РАМН. 2021:76(6): 604–611. [Kondrakhina IN, Zatevalov AM, Gatiatulina ER, Nikonorov AA, Deryabin DG, Gubanov AA. Evaluation of the Effectiveness of Personalized Treatment of Trace Element and Vitamin Status in Men with Initial Stages of Androgenic Alopecia Treated with Conservative Therapy. Annals of the Russian Academy of Medical Sciences. 2021;76(6):604–611. (In Russ.)] doi: 10.15690/vramn1617
Supplementary files
