Pharmacogenomics of hyaluronic acid
- Authors: Vaiman E.E.1, Shnayder N.A.1,2, Dyuzhakova A.V.3, Nikitina E.I.4, Borzykh O.B.5, Nasyrova R.F1
-
Affiliations:
- V. M. Bekhterev National Medical Research Center of Psychiatry and Neurology
- V. F. Voino-Yasenetsky Krasnoyarsk State Medical University
- Krasnoyarsk Interdistrict Hospital No. 2
- Clinic on Komarov
- Krasnoyarsk State Medical University named after Professor V. F. Voino-Yasenetsky
- Issue: Vol 97, No 3 (2021)
- Pages: 24-38
- Section: REVIEWS
- URL: https://bakhtiniada.ru/0042-4609/article/view/117560
- DOI: https://doi.org/10.25208/vdv1193
- ID: 117560
Cite item
Full Text
Abstract
Abstract.Introduction: Hyaluronic acid (hyaluronan, HA) has become the most popular tool for improving the skin condition during aging, correcting wrinkles and other cosmetic defects.
Objective: Analysis of the results of studies that reflect the pharmacogenomics of the synthesis, degradation, and reception of HA. Materials and methods: We searched for full-text publications in Russian and English in the E-Library, PubMed, Springer, Clinical keys, Google Scholar databases, using keywords and combined word searches (hyaluronic acid, hyaluronan, synthesis, degradation, reception, receptor, genetics), over the past decade. In addition, the review included earlier publications of historical interest. Despite our comprehensive searches of these commonly used databases and search terms, it cannot be excluded that some publications may have been missed. Results: The lecture examines: the role of ha in normal and aging human; genes involved in the synthesis (HAS1, HAS2, HAS3), degradation (HYAL1, HYAL2, HYAL3) and reception of ha (CD44, HARE, RHAMM); as well as the expression of their encoded proteins and enzymes in the skin. Conclusion: Expanding our knowledge of the pharmacogenomics of endogenous ha and increasing the exogenous HA drugs (used in anti-aging therapy and medical cosmetology) on the pharmaceutical market requires taking into account individual, including genetically determined, characteristics of the body of each individual patient to ensure an optimal balance of effectiveness/safety of exogenous HA from the point of view of personalized medicine
Full Text
##article.viewOnOriginalSite##About the authors
Elena E. Vaiman
V. M. Bekhterev National Medical Research Center of Psychiatry and Neurology
Author for correspondence.
Email: vaimanelenadoc@gmail.com
ORCID iD: 0000-0001-6836-9590
neurologist, junior research associate
Russian Federation, St. PetersburgNatalia A. Shnayder
V. M. Bekhterev National Medical Research Center of Psychiatry and Neurology; V. F. Voino-Yasenetsky Krasnoyarsk State Medical University
Email: nataliashnayder@gmail.com
ORCID iD: 0000-0002-2840-837X
neurologist, junior research associate
Russian Federation, St. Petersburg; KrasnoyarskAnna V. Dyuzhakova
Krasnoyarsk Interdistrict Hospital No. 2
Email: humsterzoa@gmail.com
ORCID iD: 0000-0001-8720-6172
dermatologist
Russian Federation, KrasnoyarskEvgenia I. Nikitina
Clinic on Komarov
Email: v205408@yandex.ru
gynecologist-endocrinologist
Russian Federation, VladivostokOlga B. Borzykh
Krasnoyarsk State Medical University named after Professor V. F. Voino-Yasenetsky
Email: kurumchina@mail.ru
ORCID iD: 0000-0002-3651-4703
dermatologist, MD, сand. sci.
Russian Federation, KrasnoyarskRegina F Nasyrova
V. M. Bekhterev National Medical Research Center of Psychiatry and Neurology
Email: nreginaf77@gmail.com
ORCID iD: 0000-0003-1874-9434
psychiatrist, clinical pharmacologist
Russian Federation, Saint-PetersburgReferences
- Maytin E.V. Hyaluronan: More than just a wrinkle filler. Glycobiology. 2016; 26 (6): 553-9. doi: 10.1093/glycob/cww033
- Laurent T. C., Fraser J. R. Hyaluronan. FASEB J. 1992; 6 (7): 2397-404. PMID: 1563592
- Fraser J. R., Laurent T. C., Laurent U.B. Hyaluronan: its nature, distribution, functions and turnover. J Intern Med. 1997; 242 (1): 27-33. doi: 10.1046/j.1365-2796.1997.00170.x
- Maytin E. V. Hyaluronan: More than just a wrinkle filler. Glycobiology. 2016; 26 (6): 553-9. doi: 10.1093/glycob/cww033
- Tzellos T. G., Klagas I., Vahtsevanos K., Triaridis S., Printza A., Kyrgidis A., Karakiulakis G., Zouboulis C. C., Papakonstantinou E. Extrinsic ageing in the human skin is associated with alterations in the expression of hyaluronic acid and its metabolizing enzymes. Exp Dermatol. 2009; 18 (12): 1028-35. doi: 10.1111/j.1600-0625.2009.00889.x
- Papakonstantinou E., Roth M., Karakiulakis G. Hyaluronic acid: A key molecule in skin aging. Dermatoendocrinol. 2012; 4 (3): 253-8. doi: 10.4161/derm.21923
- Хабаров В.Н. Гиалуроновая кислота в инъекционной косметологии. М.: ГЭОТАР-Медиа. 2017. 240 с.
- Itano N., Kimata K. Mammalian hyaluronan synthases. IUBMB Life. 2002; 54 (4): 195-9. doi: 10.1080/15216540214929
- Sugiyama Y., Shimada A., Sayo T., Sakai S., Inoue S. Putative hyaluronan synthase mRNA are expressed in mouse skin and TGF-beta upregulates their expression in cultured human skin cells. J Invest Dermatol. 1998; 110 (2): 116-21. doi: 10.1046/j.1523-1747.1998.00093.x
- Weigel P. H. Hyaluronan synthase: The mechanism of initiation at the reducing end and a pendulum model for polysaccharide translocation to the cell exterior. Int J Cell Biol. 2015; 2015: 367579. doi: 10.1155/2015/367579
- HAS1 hyaluronan synthase 1. Available to: 08.11.2020 URL:www.ncbi.nlm.nih.gov/gene/3036
- HAS2 hyaluronan synthase 2. Available to: 08.11.2020 URL:https://www.ncbi.nlm.nih.gov/gene/3037
- HAS3 hyaluronan synthase 3. Available to: 08.11.2020 URL:https://www.ncbi.nlm.nih.gov/gene/3038
- Csoka A. B., Frost G. I., Stern R. The six hyaluronidase-like genes in the human and mouse genomes. Matrix Biol. 2001; 20 (8): 499-508. doi: 10.1016/s0945-053x(01)00172-x
- Олигосахариды и дендритные клетки. https://medgel.ru/article/1000034/. Дата обращения: 08 ноября 2020
- Fiszer-Szafarz B., Szafarz D., Vannier P. Polymorphism of hyaluronidase in serum from man, various mouse strains and other vertebrate species revealed by electrophoresis. Biol Cell. 1990; 68 (2): 95-100. doi: 10.1016/0248-4900(90)90293-c
- HYAL1 hyaluronidase 1. Available to: 08.11.2020 URL:https://www.ncbi.nlm.nih.gov/gene/3373
- HYAL2 hyaluronidase 2. Available to: 08.11.2020 URL:https://www.ncbi.nlm.nih.gov/gene/8692
- HYAL3 hyaluronidase 3. Available to: 08.11.2020 URL:https://www.ncbi.nlm.nih.gov/gene/8372
- HYAL4 hyaluronidase 4. Available to: 08.11.2020 URL:https://www.ncbi.nlm.nih.gov/gene/23553
- Yoshida H., Nagaoka A., Kusaka-Kikushima A., Tobiishi M., Kawabata K., Sayo T., Sakai S., Sugiyama Y., Enomoto H., Okada Y., Inoue S. KIAA1199, a deafness gene of unknown function, is a new hyaluronan binding protein involved in hyaluronan depolymerization. Proc Natl Acad Sci U S A. 2013; 110 (14): 5612-7. doi: 10.1073/pnas.1215432110
- Abe S., Usami S., Nakamura Y. Mutations in the gene encoding KIAA1199 protein, an inner-ear protein expressed in Deiters' cells and the fibrocytes, as the cause of nonsyndromic hearing loss. J Hum Genet. 2003; 48 (11): 564-570. doi: 10.1007/s10038-003-0079-2
- Yoshida H., Okada Y. Role of HYBID (Hyaluronan Binding Protein Involved in Hyaluronan Depolymerization), Alias KIAA1199/CEMIP, in Hyaluronan Degradation in Normal and Photoaged Skin. Int J Mol Sci. 2019; 20 (22): 5804. doi: 10.3390/ijms20225804
- Yamamoto H., Tobisawa Y., Inubushi T., Irie F., Ohyama C., Yamaguchi Y. A mammalian homolog of the zebrafish transmembrane protein 2 (TMEM2) is the long- sought-after cell-surface hyaluronidase. J Biol Chem. 2017; 292 (18): 7304-7313. doi: 10.1074/jbc.M116.770149
- Yoshino Y, Goto M, Hara H, Inoue S. The role and regulation of TMEM2 (transmembrane protein 2) in HYBID (hyaluronan (HA)-binding protein involved in HA depolymerization/ KIAA1199/CEMIP)-mediated HA depolymerization in human skin fibroblasts. Biochem Biophys Res Commun. 2018; 505 (1): 74-80. doi: 10.1016/j.bbrc.2018.09.097
- Screaton G. R., Bell M. V., Jackson D. G., Cornelis F. B., Gerth U., Bell J. I. Genomic structure of DNA encoding the lymphocyte homing receptor CD44 reveals at least 12 alternatively spliced exons. Proc Natl Acad Sci U S A. 1992; 89 (24): 12160-4. doi: 10.1073/pnas.89.24.12160
- Hardwick C., Hoare K., Owens R., Hohn H. P., Hook M., Moore D., Cripps V., Austen L., Nance D. M., Turley E. A. Molecular cloning of a novel hyaluronan receptor that mediates tumor cell motility. J Cell Biol. 1992; 117 (6): 1343-50. doi: 10.1083/jcb.117.6.1343
- Veiseh M., Leith S. J., Tolg C., Elhayek S. S., Bahrami S. B., Collis L., Hamilton S., McCarthy J. B., Bissell M. J., Turley E. Uncovering the dual role of RHAMM as an HA receptor and a regulator of CD44 expression in RHAMM-expressing mesenchymal progenitor cells. Front Cell Dev Biol. 2015; 3: 63. doi: 10.3389/fcell.2015.00063
- Savani R.C., Cao G., Pooler P.M., Zaman A., Zhou Z., DeLisser H.M. Differential involvement of the hyaluronan (HA) receptors CD44 and receptor for HA-mediated motility in endothelial cell function and angiogenesis. J Biol Chem. 2001; 276 (39): 36770-8. doi: 10.1074/jbc.M102273200
- Choi S., Wang D., Chen X., Tang L.H., Verma A., Chen Z., Kim B.J., Selesner L., Robzyk K., Zhang G., Pang S., Han T., Chan C.S., Fahey T.J. 3rd, Elemento O., Du Y.N. Function and clinical relevance of RHAMM isoforms in pancreatic tumor progression. Mol Cancer. 2019; 18 (1): 92. doi: 10.1186/s12943-019-1018-y
- Chen Y.T., Chen Z., Du Y.N. Immunohistochemical analysis of RHAMM expression in normal and neoplastic human tissues: a cell cycle protein with distinctive expression in mitotic cells and testicular germ cells. Oncotarget. 2018; 9 (30): 20941-20952. doi: 10.18632/oncotarget.24939
- Buttermore S. T., Hoffman M. S., Kumar A., Champeaux A., Nicosia S. V., Kruk P. A. Increased RHAMM expression relates to ovarian cancer progression. J Ovarian Res. 2017; 10 (1): 66. doi: 10.1186/s13048-017-0360-1
- Wang J., Li D., Shen W., Sun W., Gao R., Jiang P., Wang L., Liu Y., Chen Y., Zhou W., Wang R., Xiang R., Stupack D., Luo N. RHAMM inhibits cell migration via the AKT/GSK3β/Snail axis in luminal A subtype breast cancer. Anat Rec (Hoboken). 2020; 303 (9): 2344-2356. doi: 10.1002/ar.24321
- Song J. M., Im J., Nho R. S., Han Y. H., Upadhyaya P., Kassie F. Hyaluronan-CD44/RHAMM interaction-dependent cell proliferation and survival in lung cancer cells. Mol Carcinog. 2019; 58 (3): 321-333. doi: 10.1002/mc.22930
- Nedvetzki S., Gonen E., Assayag N., Reich R., Williams R. O., Thurmond R. L., Huang J. F., Neudecker B. A., Wang F. S., Turley E. A., Naor D. RHAMM, a receptor for hyaluronan- mediated motility, compensates for CD44 in inflamed CD44-knockout mice: a different interpretation of redundancy. Proc Natl Acad Sci U S A. 2004; 101 (52): 18081-6. doi: 10.1073/pnas.0407378102
- Pandey M. S., Harris E. N., Weigel P. H. HARE-Mediated Endocytosis of Hyaluronan and Heparin Is Targeted by Different Subsets of Three Endocytic Motifs. Int J Cell Biol. 2015; 2015: 524707. doi: 10.1155/2015/524707
- Mattheolabakis G., Milane L., Singh A., Amiji M. M. Hyaluronic acid targeting of CD44 for cancer therapy: from receptor biology to nanomedicine. J Drug Target. 2015; 23 (7-8): 605-18. doi: 10.3109/1061186X.2015.1052072
- Simpson M. A., de la Motte C., Sherman L. S., Weigel P. H. Advances in Hyaluronan Biology: Signaling, Regulation, and Disease Mechanisms. Int J Cell Biol. 2015; 2015: 690572. doi: 10.1155/2015/690572
- Cyphert JM, Trempus CS, Garantziotis S. Size Matters: Molecular Weight Specificity of Hyaluronan Effects in Cell Biology. Int J Cell Biol. 2015;2015:563818. doi: 10.1155/2015/563818
- CD44 molecule (Indian blood group). Available to: 08.11.2020 URL:https://www.ncbi.nlm.nih.gov/gene/960/?report=expression
- STAB2 stabilin 2. Available to: 08.11.2020 URL:https://www.ncbi.nlm.nih.gov/gene/55576
- HMMR hyaluronan mediated motility receptor. Available to: 08.11.2020 URL:https://www.ncbi.nlm.nih.gov/gene/3161
- Slominski A. T., Zmijewski M. A., Skobowiat C., Zbytek B., Slominski R. M., Steketee J. D. Sensing the environment: regulation of local and global homeostasis by the skin's neuroendocrine system. Adv Anat Embryol Cell Biol. 2012; 212: v, vii, 1-115. doi: 10.1007/978-3-642-19683-6_1; Bocheva G., Slominski R. M., Slominski A. T. Neuroendocrine Aspects of Skin Aging. Int J Mol Sci. 2019; 20 (11): 2798. doi: 10.3390/ijms20112798
- Baumann L. Skin ageing and its treatment. J Pathol. 2007; 211 (2): 241-51. doi: 10.1002/path.2098; Uitto J. The role of elastin and collagen in cutaneous aging: intrinsic aging versus photoexposure. J Drugs Dermatol. 2008; 7 (2 Suppl): s12-6. PMID: 18404866
- Hasegawa K., Yoneda M., Kuwabara H., Miyaishi O., Itano N., Ohno A., Zako M., Isogai Z. Versican, a major hyaluronan-binding component in the dermis, loses its hyaluronan-binding ability in solar elastosis. J Invest Dermatol. 2007; 127 (7): 1657-63. doi: 10.1038/sj.jid.5700754
- Yoshida H., Nagaoka A., Komiya A., Aoki M., Nakamura S., Morikawa T., Ohtsuki R., Sayo T., Okada Y., Takahashi Y. Reduction of hyaluronan and increased expression of HYBID (alias CEMIP and KIAA1199) correlate with clinical symptoms in photoaged skin. Br J Dermatol. 2018; 179 (1): 136-144. doi: 10.1111/bjd.16335
- Vigetti D., Passi A. Hyaluronan synthases posttranslational regulation in cancer. Adv Cancer Res. 2014; 123: 95-119. doi: 10.1016/B978-0-12-800092-2.00004-6
- Hall C. L., Turley E. A. Hyaluronan: RHAMM mediated cell locomotion and signaling in tumorigenesis. J Neurooncol. 1995; 26 (3): 221-9. doi: 10.1007/BF01052625
- Turley E. A., Naor D. RHAMM and CD44 peptides-analytic tools and potential drugs. Front Biosci (Landmark Ed). 2012; 17: 1775-94. doi: 10.2741/4018
- Хабаров, В. Н. Гиалуроновая кислота: применение в косметологии и медицине : монография / Хабаров В.Н., Михайлова Н.П. - Германия : LAP LAMBERT Acad. Publ., 2012. - 164 с.
- Highley C. B., Prestwich G. D., Burdick J. A. Recent advances in hyaluronic acid hydrogels for biomedical applications. Curr Opin Biotechnol. 2016; 40: 35-40. doi: 10.1016/j.copbio.2016.02.008
- Li W. H., Wong H. K., Serrano J., Randhawa M., Kaur S., Southall M. D., Parsa R. Topical stabilized retinol treatment induces the expression of HAS genes and HA production in human skin in vitro and in vivo. Arch Dermatol Res. 2017; 309 (4): 275-283. doi: 10.1007/s00403-017-1723-6
- Эрнандес. Е. И. Новая косметология. Возрастная и гендерная косметология. Издательство: Косметика и медицина. 2017. 456 с
- Cowman M. K., Lee H. G., Schwertfeger K. L., McCarthy J. B., Turley E. A. The Content and Size of Hyaluronan in Biological Fluids and Tissues. Front Immunol. 2015; 6: 261. doi: 10.3389/fimmu.2015.00261
- Robert L. Hyaluronan, a truly "youthful" polysaccharide. Its medical applications. Pathol Biol. 2015; 63 (1): 32-4. doi: 10.1016/j.patbio.2014.05.019
- Conrozier T., Eymard F., Afif N., Balblanc J. C., Legré-Boyer V., Chevalier X.; Happyvisc Study Group. Safety and efficacy of intra-articular injections of a combination of hyaluronic acid and mannitol (HAnOX-M) in patients with symptomatic knee osteoarthritis: Results of a double-blind, controlled, multicenter, randomized trial. Knee. 2016; 23 (5): 842-8. doi: 10.1016/j.knee.2016.05.015
- Liang J., Jiang D., Noble P. W.. Hyaluronan as a therapeutic target in human diseases. Adv Drug Deliv Rev. 2016; 97: 186-203. doi: 10.1016/j.addr.2015.10.017
- Zhu Y., Hu J., Yu T., Ren Y., Hu L. High Molecular Weight Hyaluronic Acid Inhibits Fibrosis of Endometrium. Med Sci Monit. 2016; 22: 3438-3445. doi: 10.12659/msm.896028
- Chanmee T., Ontong P., Itano N. Hyaluronan: A modulator of the tumor microenvironment. Cancer Lett. 2016; 375 (1): 20-30. doi: 10.1016/j.canlet.2016.02.031
- Stern R. Hyaluronan catabolism: a new metabolic pathway. Eur J Cell Biol. 2004; 83 (7): 317-25. doi: 10.1078/0171-9335-00392
- Fraser J. R., Laurent T. C., Laurent U. B. Hyaluronan: its nature, distribution, functions and turnover. J Intern Med. 1997; 242 (1): 27-33. doi: 10.1046/j.1365-2796.1997.00170.x
Supplementary files
