Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 78, № 4 (2023)

Обложка

Весь выпуск

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Averaging and mixing for stochastic perturbations of linear conservative systems

Хуанг Г., Куксин С.Б.

Аннотация

We study stochastic perturbations of linear systems of the form\begin{equation}dv(t)+Av(t) dt =\varepsilon P(v(t)) dt+\sqrt{\varepsilon} \mathcal{B}(v(t)) dW (t), \qquad v\in\mathbb{R}^D, \tag{*}\end{equation}where $A$ is a linear operator with non-zero imaginary spectrum.It is assumed that the vector field $P(v)$and the matrix function $\mathcal{B}(v)$ are locally Lipschitz with at most polynomial growth at infinity, that the equationis well-posed and a few of first moments of the norms of solutions $v(t)$ are bounded uniformly in $\varepsilon$. We use Khasminski'sapproach to stochastic averaging to show that, as $\varepsilon\to0$, a solution $v(t)$, written in the interaction representation interms of the operator $A$, for $0\leqslant t\leqslantConst\cdot\varepsilon^{-1}$ converges in distribution to a solution of an effective equation.The latter is obtained from $(*)$ by means of certain averaging. Assuming that equation $(*)$ and/or the effectiveequation are mixing, we examine this convergence further.Bibliography: 27 titles.

Успехи математических наук. 2023;78(4):3-52
pages 3-52 views

Attractors. Then and now

Зелик С.В.

Аннотация

This survey is dedicated to the 100th anniversary of Mark Iosifovich Vishikand is based on a number of mini-courses taught by the author at the Universityof Surrey (UK) and Lanzhou University (China). It discusses the classicaland modern results of the theory of attractors for dissipative PDEs,including attractors for autonomous and non-autonomous equations,dynamical systems in general topological spaces, various types of trajectory,pullback and random attractors, exponential attractors,determining functionals and inertial manifolds, as well as the dimension theoryfor the classes of attractors mentioned above. The theoretical resultsare illustrated by a number of clarifying examples and counterexamples.Bibliography: 248 titles.
Успехи математических наук. 2023;78(4):53-198
pages 53-198 views

О взаимодействии ударных волн в двумерных изобарических средах

Рыков Ю.Г.
Успехи математических наук. 2023;78(4):199-200
pages 199-200 views

О рядах Фурье по кратной тригонометрической системе

Григорян М.Г., Конягин С.В.
Успехи математических наук. 2023;78(4):201-202
pages 201-202 views

О симметризаторах в квантовых матричных алгебрах

Гуревич Д.И., Сапонов П.А., Соколов В.В.
Успехи математических наук. 2023;78(4):203-204
pages 203-204 views
pages 205-206 views

Детерминантное центральное расширение и $\cup$-произведения $1$-коциклов

Осипов Д.В.
Успехи математических наук. 2023;78(4):207-208
pages 207-208 views

Группа Пикара связной аффинной алгебраической группы

Попов В.Л.
Успехи математических наук. 2023;78(4):209-210
pages 209-210 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».