Stein method and characteristic functions
- Authors: Tikhomirov A.N.1,2
-
Affiliations:
- Institute of Physics and Mathematics, Komi Science Centre of Ural Branch of Russian Academy of Sciences
- National Research University Higher School of Economics
- Issue: Vol 80, No 4 (2025)
- Pages: 121-172
- Section: Articles
- URL: https://bakhtiniada.ru/0042-1316/article/view/306766
- DOI: https://doi.org/10.4213/rm10242
- ID: 306766
Cite item
Abstract
We present a survey of various application of the method of the description of approximating distribution by means of differential equations for characteristic functions and, in particular, of applications of this description to estimates for the closeness of distributions. This idea was originally put forward by the author in 1976. Subsequently, this approach, which is called the Stein–Tikhomirov method by some authors (for instance, see papers by Eichelsbacher, Rednoss, Sunklodas, and Formanov), was significantly developed.
About the authors
Aleksandr Nikolaevich Tikhomirov
Institute of Physics and Mathematics, Komi Science Centre of Ural Branch of Russian Academy of Sciences; National Research University Higher School of Economics
Author for correspondence.
Email: tikhomirov@ipm.komisc.ru
Doctor of physico-mathematical sciences, Professor
References
- B. Arras, C. Houdre, On Stein's method for infinitely divisible laws with finite first moment, SpringerBriefs Probab. Math. Stat., Springer, Cham, 2019, xi+104 pp.
- B. Arras, G. Mijoule, G. Poly, Y. Swan, A new approach to the Stein–Tikhomirov method: with applications to the second Wiener chaos and Dickman convergence, 2017 (v1 – 2016), 45 pp.
- A. D. Barbour, “Poisson convergence and random graphs”, Math. Proc. Cambridge Philos. Soc., 92:2 (1982), 349–359
- A. D. Barbour, “Asymptotic expansions based on smooth functions in the central limit theorem”, Probab. Theory Relat. Fields, 72:2 (1986), 289–303
- A. D. Barbour, “Asymptotic expansions in the Poisson limit theorem”, Ann. Probab., 15:2 (1987), 748–766
- A. D. Barbour, “Stein's method and Poisson process convergence”, J. Appl. Probab., 25:A (1988), 175–184
- A. D. Barbour, “Stein's method for diffusion approximations”, Probab. Theory Related Fields, 84:3 (1990), 297–322
- A. D. Barbour, L. H. Y. Chen (eds.), An introduction to Stein's method, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., 4, Singapore Univ. Press, Singapore; World Sci. Publ., Hackensack, NJ, 2005, xii+225 pp.
- A. D. Barbour, L. H. Y. Chen, Wei-Liem Loh, “Compound Poisson approximation for nonnegative random variables via Stein's method”, Ann. Probab., 20:4 (1992), 1843–1866
- A. D. Barbour, L. Holst, S. Janson, Poisson approximation, Oxford Stud. Probab., 2, The Clarendon Press, Oxford Univ. Press, New York, 1992, x+277 pp.
- В. Бенткус, “Новый подход к аппроксимациям в теории вероятностей и теории операторов”, Liet. Mat. Rink., 43:4 (2003), 444–470
- V. Bentkus, F. Götze, A. Tikhomirov, “Berry–Esseen bounds for statistics of weakly dependent samples”, Bernoulli, 3:3 (1997), 329–349
- С. Г. Бобков, “Близость вероятностных рапределений в терминах преобразований Фурье–Стилтьеса”, УМН, 71:6(432) (2016), 37–98
- S. G. Bobkov, F. Götze, A. N. Tikhomirov, “On concentration of empirical measures and convergence to the semi-circle law”, J. Theoret. Probab., 23:3 (2010), 792–823
- E. Bolthausen, “On the central limit theorem for stationary mixing random fields”, Ann. Probab., 10:4 (1982), 1047–1050
- G. Bresler, D. Nagaraj, “Stein's method for stationary distributions of Markov chains and application to Ising models”, Ann. Appl. Probab., 29:5 (2019), 3230–3265
- A. V. Bulinski, P. Doukhan, “Vitesse de convergence dans le theorème de limite centrale pour les champs melangeants satisfaisant des hypothèses de moments faibles”, C. R. Acad. Sci. Paris Ser. I Math., 311:12 (1990), 801–805
- A. Bulinski, A. Shashkin, Limit theorems for associated random fields and related systems, Adv. Ser. Stat. Sci. Appl. Probab., 10, World Sci. Publ., Hackensack, NJ, 2007, xii+436 pp.
- A. Bulinski, N. Slepov, “Sharp estimates for proximity of geometric and related sums distributions to limit laws”, Mathematics, 10:24 (2022), 4747, 37 pp.
- S. Chatterjee, “A short survey of Stein's method”, Proceedings of the international congress of mathematicians (ICM 2014, Seoul), v. IV, Kyung Moon Sa, Seoul, 2014, 1–24
- S. Chatterjee, Qi-Man Shao, “Nonnormal approximation by Stein's method of exchangeable pairs with application to the Curie–Weiss model”, Ann. Appl. Probab., 21:2 (2011), 464–483
- L. H. Y. Chen, “Poisson approximation for dependent trials”, Ann. Probab., 3:3 (1975), 534–545
- L. H. Y. Chen, “Stein's method: some perspectives with applications”, Probability towards 2000, Lect. Notes Stat., 128, Springer-Verlag, New York, 1998, 97–122
- L. H. Y. Chen, “Stein's method of normal approximation: some recollections and reflections”, Ann. Statist., 49:4 (2021), 1850–1863
- L. H. Y. Chen, L. Goldstein, Qi-Man Shao, Normal approximation by Stein's method, Probab. Appl. (N. Y.), Springer, Heidelberg, 2011, xii+405 pp.
- L. H. Y. Chen, Qi-Man Shao, “A non-uniform Berry–Esseen bound via Stein's method”, Probab. Theory Related Fields, 120:2 (2001), 236–254
- L. H. Y. Chen, Qi-Man Shao, “Normal approximation under local dependence”, Ann. Probab., 32:3A (2004), 1985–2028
- Peng Chen, I. Nourdin, Lihu Xu, Xiaochuan Yang, “Multivariate stable approximation by Stein's method”, J. Theoret. Probab., 37:1 (2024), 446–488
- P. Chigansky, F. C. Klebaner, “Compound Poisson approximation for triangular arrays with applications to threshold estimation”, Electron. Commun. Probab., 17 (2012), 29, 10 pp.
- P. Diaconis, “The distribution of leading digits and uniform distribution mod 1”, Ann. Probab., 5:1 (1977), 72–81
- P. Diaconis, “Stein's method for Markov chains: first examples”, Stein's method: expository lectures and applications, IMS Lecture Notes Monogr. Ser., 46, Inst. Math. Statist., Beachwood, OH, 2004, 27–43
- P. Diaconis, S. Holmes (eds.), Stein's method: expository lectures and applications, IMS Lecture Notes Monogr. Ser., 46, Inst. Math. Statist., Beachwood, OH, 2004, vi+139 pp.
- P. Eichelsbacher, M. Löwe, “Stein's method for dependent random variables occuring in statistical mechanics”, Electron. J. Probab., 15 (2010), 30, 962–988
- P. Eichelsbacher, B. Martschink, “On rates of convergence in the Curie–Weiss–Potts model with an external field”, Ann. Inst. Henri Poincare Probab. Stat., 51:1 (2015), 252–282
- P. Eichelsbacher, B. Rednoss, “Kolmogorov bounds for decomposable random variables and subgraph counting by the Stein–Tikhomirov method”, Bernoulli, 29:3 (2023), 1821–1848
- P. Eichelsbacher, G. Reinert, “Stein's method for discrete Gibbs measures”, Ann. Appl. Probab., 18:4 (2008), 1588–1618
- P. Eichelsbacher, C. Thäle, “Malliavin–Stein method for variance-gamma approximation on Wiener space”, Electron. J. Probab., 20 (2015), 123, 28 pp.
- Ш. К. Форманов, “Метод Стейна–Тихомирова и неклассическая центральная предельная теорема”, Докл. РАН, 376:4 (2001), 458–460
- Ш. К. Форманов, “О методе Стейна–Тихомирова и его приложениях в неклассических предельных теоремах”, Дискрет. матем., 19:1 (2007), 27–39
- R. E. Gaunt, A. M. Pickett, G. Reinert, “Chi-square approximation by Stein's method with application to Pearson's statistic”, Ann. Appl. Probab., 27:2 (2017), 720–756
- L. Goldstein, G. Reinert, “Stein's method and the zero bias transformation with application to simple random sampling”, Ann. Appl. Probab., 7:4 (1997), 935–952
- L. Goldstein, Y. Rinott, “Multivariate normal approximations by Stein's method and size bias couplings”, J. Appl. Probab., 33:1 (1996), 1–17
- F. Götze, “On the rate of convergence in the multivariate CLT”, Ann. Probab., 19:2 (1991), 724–739
- F. Götze, H. Kösters, A. N. Tikhomirov, “Asymptotic spectra of matrix-valued functions of independent random matrices and free probability”, Random Matrices Theory Appl., 4:2 (2015), 1550005, 85 pp.
- Ф. Гeтце, А. А. Наумов, А. Н. Тихомиров, “Предельные теоремы для двух классов случайных матриц с зависимыми элементами”, Теория вероятн. и ее примен., 59:1 (2014), 61–80
- F. Götze, A. N. Tikhomirov, “Asymptotic distribution of quadratic forms”, Ann. Probab., 27:2 (1999), 1072–1098
- F. Götze, A. N. Tikhomirov, “Limit theorems for spectra of random matrices with martingale structure”, Stein's method and applications, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., 5, Singapore Univ. Press, Singapore; World Sci. Publ., River Edge, NJ, 2005, 181–193
- F. Götze, A. N. Tikhomirov, “Limit theorems for spectra of random matrices with martingale structure”, Теория вероятн. и ее примен., 51:1 (2006), 171–192
- X. Guyon, S. Richardson, “Vitesse de convergence du theorème de la limite centrale pour des champs faiblement dependants”, Z. Wahrsch. Verw. Gebiete, 66:2 (1984), 297–314
- Soo-Thong Ho, L. H. Y. Chen, “An $L_p$ bound for the remainder in a combinatorial central limit theorem”, Ann. Probab., 6:2 (1978), 231–249
- И. А. Ибрагимов, Ю. В. Линник, Независимые и стационарно связанные величины, Наука, М., 1965, 524 с.
- A. M. Khorunzhy, B. A. Khoruzhenko, L. A. Pastur, “Asymptotic properties of large random matrices with independent entries”, J. Math. Phys., 37:10 (1996), 5033–5060
- E. Meckes, “On Stein's method for multivariate normal approximation”, High dimensional probability V: the Luminy volume, Inst. Math. Stat. (IMS) Collect., 5, Inst. Math. Statist., Beachwood, OH, 2009, 153–178
- G. Mijoule, M. Raič, G. Reinert, Y. Swan, “Stein's density method for multivariate continuous distributions”, Electron. J. Probab., 28 (2023), 59, 40 pp.
- I. Nourdin, G. Peccati, “Stein's method and exact Berry–Esseen asymptotics for functionals of Gaussian fields”, Ann. Probab., 37:6 (2009), 2231–2261
- I. Nourdin, G. Peccati, “Stein's method on Wiener chaos”, Probab. Theory Related Fields, 145:1-2 (2009), 75–118
- I. Nourdin, G. Peccati, Normal approximations with Malliavin calculus. From Stein's method to universality, Cambridge Tracts in Math., 192, Cambridge Univ. Press, Cambridge, 2012, xiv+239 pp.
- E. A. Peköz, A. Röllin, N. Ross, “Generalized gamma approximation with rates for urns, walks and trees”, Ann. Probab., 44:3 (2016), 1776–1816
- W. Philipp, “The remainder in the central limit theorem for mixing stochastic processes”, Ann. Math. Statist., 40:2 (1969), 601–609
- M. Raič, “CLT-related large deviation bounds based on Stein's method”, Adv. in Appl. Probab., 39:3 (2007), 731–752
- Y. Rinott, V. Rotar, “On coupling constructions and rates in the CLT for dependent summands with applications to the antivoter model and weighted $U$-statistics”, Ann. Appl. Probab., 7:4 (1997), 1080–1105
- Y. Rinot, V. Rotar, “Normal approximations by Stein's method”, Decis. Econ. Finance, 23:1 (2000), 15–29
- A. Röllin, “Kolmogorov bounds for the normal approximation of the number of triangles in the Erdös–Renyi random graph”, Probab. Engrg. Inform. Sci., 36:3 (2022), 747–773
- M. Roos, “Stein's method for compound Poisson approximation: the local approach”, Ann. Appl. Probab., 4:4 (1994), 1177–1187
- N. Ross, “Fundamentals of Stein's method”, Probab. Surv., 8 (2011), 210–293
- Qi-Man Shao, Zhuo-Song Zhang, “Berry–Esseen bounds of normal and nonnormal approximation for unbounded exchangeable pairs”, Ann. Probab., 47:1 (2019), 61–108
- И. Г. Шевцова, “Об абсолютных константах в неравенстве Берри–Эссеена и его структурных и неравномерных уточнениях”, Информ. и ее примен., 7:1 (2013), 124–125
- C. Stein, “A bound for the error in the normal approximation to the distribution of a sum of dependent random variables”, Proceedings of the sixth Berkeley symposium on mathematical statistics and probability (Univ. California, Berkeley, CA, 1970/1971), v. II, Probability theory, Univ. California Press, Berkeley, CA, 1972, 583–602
- C. Stein, Approximate computation of expectations, IMS Lecture Notes Monogr. Ser., 7, Inst. Math. Statist., Hayward, CA, 1986, iv+164 pp.
- Й. Сунклодас, “Аппроксимация распределений сумм слабо зависимых случайных величин нормальным распределением”, Теория вероятностей – 6. Предельные теоремы теории вероятностей, Итоги науки и техн. Сер. Соврем. пробл. матем. Фундам. направления, 81, ВИНИТИ, М., 1991, 140–199
- H. Takahata, “$L_{infty}$-bound for asymptotic normality of weakly dependent summands using Stein's result”, Ann. Probab., 9:4 (1981), 676–683
- H. Takahata, “On the rates in the central limit theorem for weakly dependent random fields”, Z. Wahrsch. Verw. Gebiete, 64:4 (1983), 445–456
- А. Н. Тихомиров, “О скорости сходимости в центральной предельной теореме для слабо зависимых величин”, Вестн. Ленингр. ун-та. Сер. матем., мех., астрон., 1976, № 7(2), 158–159
- А. Н. Тихомиров, “О скорости сходимости в центральной предельной теореме для слабо зависимых величин”, Теория вероятн. и ее примен., 25:4 (1980), 800–818
- А. Н. Тихомиров, “О нормальной аппроксимации сумм векторных случайных полей с перемешиванием”, Докл. АН СССР, 272:2 (1983), 312–314
- А. Н. Тихомиров, “О распределении максимальной суммы слабо зависимых величин”, Теория вероятн. и ее примен., 31:4 (1986), 829–834
- В. М. Золотарев, Современная теория суммирования независимых случайных величин, Наука, М., 1986, 416 с.
- А. Н. Тихомиров, “О точности нормальной аппроксимации вероятности попадания в шар сумм слабо зависимых гильбертовозначных случайных величин. I”, Теория вероятн. и ее примен., 36:4 (1991), 699–710
Supplementary files
