Multi-component Toda lattice hierarchy
- Authors: Takebe T.1, Zabrodin A.V.2,3,4
-
Affiliations:
- Beijing Institute of Mathematical Sciences and Applications,Beijing, People's Republic of China
- Skolkovo Institute of Science and Technology,Moscow, Russia
- National Research University "Higher School of Economics", Moscow, Russia
- National Research Centre "Kurchatov Institute", Moscow, Russia
- Issue: Vol 80, No 4 (2025)
- Pages: 47-120
- Section: Articles
- URL: https://bakhtiniada.ru/0042-1316/article/view/306765
- DOI: https://doi.org/10.4213/rm10259
- ID: 306765
Cite item
Abstract
We give a detailed account of the $N$-component Toda lattice hierarchy, which can be regarded as a generalization of the well-known Toda chain model and its non-abelian version. This hierarchy is an extension of the one introduced earlier by Ueno and Takasaki. Our version contains $N$ discrete variables rather than one. We start from the Lax formalism, deduce the bilinear relation for wave functions from it, and then, based on the latter, prove the existence of the tau-function. We also show how the multi-component Toda lattice hierarchy is embedded into the universal hierarchy, which is basically the multi-component Kadomtsev–Petviashvili hierarchy. Finally, we show how the bilinear integral equation for the tau-function can be obtained using the free fermion technique. An example of exact solutions (a multi-component analogue of one-soliton solutions) is given.
Keywords
About the authors
Takashi Takebe
Beijing Institute of Mathematical Sciences and Applications,Beijing, People's Republic of China
Author for correspondence.
Email: takebe@bimsa.cn
Anton Vladimirovich Zabrodin
Skolkovo Institute of Science and Technology,Moscow, Russia; National Research University "Higher School of Economics", Moscow, Russia; National Research Centre "Kurchatov Institute", Moscow, Russia
Email: zabrodin@itep.ru
Doctor of physico-mathematical sciences, no status
References
- M. Toda, “Vibration of a chain with nonlinear interaction”, J. Phys. Soc. Japan, 22:2 (1967), 431–436
- М. Тода, Теория нелинейных решеток, Мир, М., 1984, 264 с.
- E. Fermi, J. Pasta, S. Ulam, Studies of nonlinear problems, Los Alamos Report LA–1940, Los Alamos Sci. Lab., Los Alamos, NM, 1955, 22 pp.
- J. Ford, “Equipartition of energy for nonlinear systems”, J. Math. Phys., 2:3 (1961), 387–393
- M. Toda, “One-dimensional dual transformation”, J. Phys. Soc. Japan, 20:11 (1965), 2095A
- M. Toda, “Koushi soliton no hakken [Discovery of lattice soliton]”, Butsuri, 51:3 (1996), 185–188
- D. W. McLaughlin, “Four examples of the inverse method as a canonical transformation”, J. Math. Phys., 16:1 (1975), 96–99
- H. Flaschka, “The Toda lattice. I. Existence of integrals”, Phys. Rev. B (3), 9:4 (1974), 1924–1925
- M. Wadati, M. Toda, “Bäcklund transformation for the exponential lattice”, J. Phys. Soc. Japan, 39:5 (1975), 1196–1203
- R. Hirota, J. Satsuma, “A variety of nonlinear network equations generated from the Bäcklund transformation for the Toda lattice”, Progr. Theoret. Phys. Suppl., 59 (1976), 64–100
- С. В. Манаков, “О полной интегрируемости и стохастизации в дискретных динамических системах”, ЖЭТФ, 67:2 (1974), 543–555
- M. Henon, “Integrals of the Toda lattice”, Phys. Rev. B (3), 9:4 (1974), 1921–1923
- O. I. Bogoyavlensky, “On perturbations of the periodic Toda lattice”, Comm. Math. Phys., 51:3 (1976), 201–209
- Р. Ю. Кириллова, “Явные решения для суперизованных цепочек Тоды”, Дифференциальная геометрия, группы Ли и механика. V, Зап. науч. сем. ЛОМИ, 123, Изд-во “Наука”, Ленинград. отд., Л., 1983, 98–111
- M. A. Olshanetsky, A. M. Perelomov, “Explicit solutions of classical generalized Toda models”, Invent. Math., 54:3 (1979), 261–269
- B. Kostant, “The solution to a generalized Toda lattice and representation theory”, Adv. Math., 34:3 (1979), 195–338
- A. M. Perelomov, “Completely integrable classical systems connected with semisimple Lie algebras. III”, Lett. Math. Phys., 1:6 (1977), 531–534
- M. A. Olshanetsky, A. M. Perelomov, “Classical integrable finite-dimensional systems related to Lie algebras”, Phys. Rep., 71:5 (1981), 313–400
- А. М. Переломов, Интегрируемые системы классической механики и алгебры Ли, Наука, М., 1990, 240 с.
- M. Adler, “On a trace functional for formal pseudo-differential operators and the symplectic structure of the Korteweg–de Vries type equations”, Invent. Math., 50:3 (1978), 219–248
- W. W. Symes, “Systems of Toda type, inverse spectral problems, and representation theory”, Invent. Math., 59:1 (1980), 13–51
- В. В. Козлов, Д. В. Трещeв, “Полиномиальные интегралы гамильтоновых систем с экспоненциальным взаимодействием”, Изв. АН СССР. Сер. матем., 53:3 (1989), 537–556
- В. В. Козлов, Д. В. Трещeв, “Числа Ковалевской обобщенных цепочек Тоды”, Матем. заметки, 46:5 (1989), 17–28
- E. Date, S. Tanaka, “Analogue of inverse scattering theory for the discrete Hill's equation and exact solutions for the periodic Toda lattice”, Progr. Theoret. Phys., 55:2 (1976), 457–465
- D. Mumford, “An algebro-geometric construction of commuting operators and of solutions to the Toda lattice equation, Korteweg de Vries equation and related non-linear equation”, Proceedings of the international symposium on algebraic geometry (Kyoto Univ., Kyoto, 1977), Kinokuniya Book Store Co., Ltd., Tokyo, 1978, 115–153
- И. М. Кричевер, “Алгебраические кривые и нелинейные разностные уравнения”, УМН, 33:4(202) (1978), 215–216
- G. Darboux, Leçons sur la theorie generale des surfaces et les applications geometriques du calcul infinitesimal, 2ème partie, Gauthiers-Villars, Paris, 1889, 522 pp.
- А. Б. Шабат, “К теории преобразований Лапласа–Дарбу”, ТМФ, 103:1 (1995), 170–175
- K. Okamoto, “Sur les echelles associees aux fonctions speciales et l'equation de Toda”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 34:3 (1987), 709–740
- А. В. Михайлов, “Об интегрируемости двумерного обобщения цепочки Тода”, Письма в ЖЭТФ, 30:7 (1979), 443–448
- A. N. Leznov, M. V. Saveliev, “Representation of zero curvature for the system of nonlinear partial differential equations $x_{alpha,zbar z}=exp(kx)_{alpha}$ and its integrability”, Lett. Math. Phys., 3:6 (1979), 489–494
- A. N. Leznov, M. V. Saveliev, “Theory of group representations and integration of nonlinear systems $x_{alpha,zbar z}=exp(kx)_{alpha}$”, Phys. D, 3:1-2 (1981), 62–72
- R. Hirota, Chokusetsu-hou niyoru soliton no suuri [Mathematics of soliton by means of the direct method], Iwanami Shoten, Tokyo, 1992
- И. М. Кричевер, “Периодическая неабелева цепочка Тода и ее двумерное обобщение”, Прил. к ст.: “Б. А. Дубровин, Тэта-функции и нелинейные уравнения”, УМН, 36:2(218) (1981), 72–77
- M. Sato, “Soliton equations as dynamical systems on an infinite dimensional Grassmann manifold”, Random systems and dynamical systems (Kyoto Univ., Kyoto, 1981), RIMS Kôkyûroku, 439, Kyoto Univ., Res. Inst. Math. Sci., Kyoto, 1981, 30–46
- M. Sato, Y. Sato, “Soliton equations as dynamical systems on infinite dimensional Grassmann manifolds”, Nonlinear partial differential equations in applied science (Tokyo, 1982), North-Holland Math. Stud., 81, Lecture Notes Numer. Appl. Anal., 5, North-Holland Publishing Co., Amsterdam, 1983, 259–271
- E. Date, M. Kashiwara, M. Jimbo, T. Miwa, “Transformation groups for soliton equations”, Nonlinear integrable systems – classical theory and quantum theory (Kyoto, 1981), World Sci. Publ., Singapore, 1983, 39–119
- M. Jimbo, T. Miwa, “Solitons and infinite dimensional Lie algebras”, Publ. Res. Inst. Math. Sci., 19:3 (1983), 943–1001
- K. Ueno, K. Takasaki, “Toda lattice hierarchy”, Group representations and systems of differential equations (Tokyo, 1982), Adv. Stud. Pure Math., 4, North-Holland Publishing Co., Amsterdam, 1984, 1–95
- K. Takasaki, Kasekibunkei no sekai – Toda koushi to sono nakama [The world of integrable systems – Toda lattice and its comrades], Kyouritsu Shuppan, Tokyo, 2001
- E. Date, M. Jimbo, M. Kashiwara, T. Miwa, “Transformation groups for soliton equations. III. Operator approach to the Kadomtsev–Petviashvili equation”, J. Phys. Soc. Japan, 50:11 (1981), 3806–3812
- V. G. Kac, J. W. van de Leur, “The $n$-component KP hierarchy and representation theory”, Important developments in soliton theory, Springer Ser. Nonlinear Dynam., Springer-Verlag, Berlin, 1993, 302–343
- K. Takasaki, T. Takebe, “Universal Whitham hierarchy, dispersionless Hirota equations and multicomponent KP hierarchy”, Phys. D, 235:1-2 (2007), 109–125
- Lee Peng Teo, “The multicomponent KP hierarchy: differential Fay identities and Lax equations”, J. Phys. A, 44:22 (2011), 225201, 20 pp.
- В. Е. Корепин, “О квантовании неабелевой цепочки Тода”, Вопросы квантовой теории поля и статистической физики. 2, Зап. науч. сем. ЛОМИ, 101, Изд-во “Наука”, Ленинград. отд., Л., 1981, 90–100
- G. F. Helminck, A. G. Helminck, A. V. Opimakh, “Equivalent forms of multi component Toda hierarchies”, J. Geom. Phys., 61:4 (2011), 847–873
- I. Krichever, A. Zabrodin, “Quasi-periodic solutions of the universal hierarchy”, Ann. Henri Poincare, 2024, 1–22, Publ. online
- Т. Мива, М. Джимбо, Э. Датэ, Солитоны: дифференциальные уравнения, симметрии и бесконечномерные алгебры, МЦНМО, М., 2005, 112 с.
- S. Kharchev, A. Marshakov, A. Mironov, A. Orlov, A. Zabrodin, “Matrix models among integrable theories: forced hierarchies and operator formalism”, Nuclear Phys. B, 366:3 (1991), 569–601
- T. Takebe, “Representation theoretical meaning of the initial value problem for the Toda lattice hierarchy. I”, Lett. Math. Phys., 21:1 (1991), 77–84
- J.-L. Gervais, Y. Matsuo, “W-geometries”, Phys. Lett. B, 274:3-4 (1992), 309–316
- T. Takebe, “A note on the modified KP hierarchy and its (yet another) dispersionless limit”, Lett. Math. Phys., 59:2 (2002), 157–172
- T. Takebe, “Toda lattice hierarchy and conservation laws”, Comm. Math. Phys., 129:2 (1990), 281–318
- L. A. Dickey, “On $tau$-functions of Zakharov–Shabat and other matrix hierarchies of integrable equations”, Algebraic aspects of integrable systems, Progr. Nonlinear Differential Equations Appl., 26, Birkhäuser Boston, Inc., Boston, MA, 1997, 49–74
- А. В. Забродин, “О матричной модифицированной иерархии Кадомцева–Петвиашвили”, ТМФ, 199:3 (2019), 343–356
- I. Krichever, A. Zabrodin, “Toda lattice with constraint of type B”, Phys. D, 453 (2023), 133827, 11 pp.
- А. В. Забродин, В. В. Прокофьев, “Тау-функция иерархии Тоды типа B”, ТМФ, 217:2 (2023), 299–316
- I. Krichever, A. Zabrodin, “Constrained Toda hierarchy and turning points of the Ruijsenaars–Schneider model”, Lett. Math. Phys., 112:2 (2022), 23, 26 pp.
- Wenchuang Guan, Shen Wang, Wenjuan Rui, Jipeng Cheng, “Lax structure and tau function for large BKP hierarchy”, Lett. Math. Phys., 115:1 (2025), 1, 40 pp.
- J. Harnad, F. Balogh, Tau functions and their applications, Cambridge Monogr. Math. Phys., Cambridge Univ. Press, Cambridge, 2021, xxvi+521 pp.
- K. Takasaki, T. Takebe, “Integrable hierarchies and dispersionless limit”, Rev. Math. Phys., 7:5 (1995), 743–808
- A. Zabrodin, “Dispersionless version of the multicomponent KP hierarchy revisited”, Phys. D, 467 (2024), 134286, 4 pp.
Supplementary files
