Специальная геометрия Бора–Зоммерфельда

Обложка
  • Авторы: Тюрин Н.А.1,2
  • Учреждения:
    1. Объединенный институт ядерных исследований, Лаборатория теоретической физики им. Н. Н. Боголюбова
    2. Математический институт им. В. А. Стеклова Российской академии наук
  • Выпуск: Том 80, № 2 (2025)
  • Страницы: 123-164
  • Раздел: Статьи
  • URL: https://bakhtiniada.ru/0042-1316/article/view/306748
  • DOI: https://doi.org/10.4213/rm10219
  • ID: 306748

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Настоящий обзор подытоживает цикл работ, посвященных построению конечномерных многообразий модулей, элементами которых являются некоторые специальные лагранжевы подмногообразия в компактных комплексных односвязных алгебраических многообразиях. Отправным пунктом наших конструкций послужила идея А. Н. Тюрина рассматривать лагранжевы подмногообразия (или их классы эквивалентности) как зеркальные аналоги стабильных векторных расслоений. Базой наших конструкций послужила программа абелевой лагранжевой алгебраической геометрии, созданная А. Н. Тюриным и А. Л. Городенцевым четверть века назад, и поскольку та программа в свою очередь основывалась на бор-зоммерфельдовой лагранжевой геометрии, известной в геометрическом квантовании, наша конструкция была названа специальной геометрией Бора–Зоммерфельда. Возникшие по ходу работы определения оказались тесно связаны с теорией областей Вейнстейна, гипотезами Элиашберга и многими другими понятиями симплектической геометрии. Основная гипотеза, возникшая при работе и подтвержденная имеющимися на сегодняшний день примерами, предполагает, что каждое такое многообразие модулей в свою очередь является алгебраическим многообразием. Библиография: 13 названий.

Об авторах

Николай Андреевич Тюрин

Объединенный институт ядерных исследований, Лаборатория теоретической физики им. Н. Н. Боголюбова; Математический институт им. В. А. Стеклова Российской академии наук

Email: ntyurin@theor.jinr.ru
доктор физико-математических наук, профессор

Список литературы

  1. А. Н. Тюрин, Геометрия векторных расслоений, Сборник избранных трудов, 1, Ин-т компьютерных исследований, М.–Ижевск, 2004, 356 с.
  2. А. Л. Городенцев, А. Н. Тюрин, “Абелева лагранжева алгебраическая геометрия”, Изв. РАН. Сер. матем., 65:3 (2001), 15–50
  3. D. A. Cox, Sh. Katz, Mirror symmetry and algebraic geometry, Math. Surveys Monogr., 68, Amer. Math. Soc., Providence, RI, 1999, xxii+469 pp.
  4. A. N. Tyurin, “Fano versus Calabi–Yau”, The Fano conference (Torino, 2002), Univ. Torino, Dipart. Mat., Torino, 2004, 701–734
  5. N. Hitchin, “Lectures on special Lagrangian submanifolds”, Winter school on mirror symmetry, vector bundles and Lagrangian submanifolds (Harvard Univ., Cambridge MA, 1999), AMS/IP Stud. Adv. Math., 23, Amer. Math. Soc., Providence, RI; Int. Press, Somerville, MA, 2001, 151–182
  6. Н. А. Тюрин, “Специальные бор–зоммерфельдовы лагранжевы подмногообразия”, Изв. РАН. Сер. матем., 80:6 (2016), 274–293
  7. Н. А. Тюрин, “Специальные бор–зоммерфельдовы лагранжевы подмногообразия в алгебраических многообразиях”, Изв. РАН. Сер. матем., 82:3 (2018), 170–191
  8. Н. А. Тюрин, “Специальная геометрия Бора–Зоммерфельда: вариации”, Изв. РАН. Сер. матем., 87:3 (2023), 184–205
  9. Н. А. Тюрин, “Многообразие модулей $D$-точных лагранжевых подмногообразий”, Сиб. матем. журн., 60:4 (2019), 907–921
  10. Н. А. Тюрин, “Пример многообразия модулей $D$-точных лагранжевых подмногообразий: сферы в многообразии флагов в $mathbb C^3$”, Труды МИАН, 320, Алгебра, арифметическая, алгебраическая и комплексная геометрия (2023), 311–323
  11. R. Harvey, H. B. Lawson, Jr., “Calibrated geometries”, Acta Math., 148 (1982), 47–157
  12. Ya. Eliashberg, “Weinstein manifolds revisited”, Modern geometry: a celebration of the work of Simon Donaldson, Proc. Sympos. Pure Math., 99, Amer. Math. Soc., Providence, RI, 2018, 59–82
  13. Ф. Гриффитс, Дж. Харрис, Принципы алгебраической геометрии, Мир, М., 1982, 864 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Тюрин Н.А., 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).