How to enhance categories, and why?
- Autores: Kaledin D.B.1,2
-
Afiliações:
- Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
- National Research University "Higher School of Economics", Moscow, Russia
- Edição: Volume 80, Nº 2 (2025)
- Páginas: 51-122
- Seção: Articles
- URL: https://bakhtiniada.ru/0042-1316/article/view/306747
- DOI: https://doi.org/10.4213/rm10159
- ID: 306747
Citar
Resumo
Palavras-chave
Sobre autores
Dmitry Kaledin
Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia; National Research University "Higher School of Economics", Moscow, Russia
Email: kaledin@mi-ras.ru
Doctor of physico-mathematical sciences, no status
Bibliografia
- J. Adamek, J. Rosicky, Locally presentable and accessible categories, London Math. Soc. Lecture Note Ser., 189, Cambridge Univ. Press, Cambridge, 1994, xiv+316 pp.
- M. Artin, A. Grothendieck, J. L. Verdier, N. Bourbaki, P. Deligne, B. Saint-Donat (eds.), Theorie de topos et cohomologie etale des schemas, Seminaire de geometrie algebrique du Bois-Marie 1963–1964 (SGA 4), v. 1, Lecture Notes in Math., 269, Theorie des topos, Exp. I–IV, Springer-Verlag, Berlin–New York, 1972, xix+525 pp.
- M. Artin, A. Grothendieck, J. L. Verdier, P. Deligne, B. Saint-Donat (eds.), Theorie de topos et cohomologie etale des schemas, Seminaire de geometrie algebrique du Bois-Marie 1963–1964 (SGA 4), v. 2, Lecture Notes in Math., 270, Exp. V–VIII, Springer-Verlag, Berlin–New York, 1972, iv+418 pp.
- M. Artin, A. Grothendieck, J. L. Verdier, P. Deligne, B. Saint-Donat (eds.), Theorie de topos et cohomologie etale des schemas, Seminaire de geometrie algebrique du Bois-Marie 1963–1964 (SGA 4), v. 3, Lecture Notes in Math., 305, Exp. IX–XIX, Springer-Verlag, Berlin–New York, 1973, vi+640 pp.
- C. Barwick, D. M. Kan, “Relative categories: another model for the homotopy theory of homotopy theories”, Indag. Math. (N. S.), 23:1-2 (2012), 42–68
- A. K. Bousfield, “Constructions of factorization systems in categories”, J. Pure Appl. Algebra, 9:2-3 (1976/77), 207–220
- E. H. Brown, Jr., “Cohomology theories”, Ann. of Math. (2), 75:3 (1962), 467–484
- P. Gabriel, F. Ulmer, Lokal präsentierbare Kategorien, Lecture Notes in Math., 221, Springer-Verlag, Berlin–New York, 1971, v+200 pp.
- M. Groth, “Derivators, pointed derivators and stable derivators”, Algebr. Geom. Topol., 13:1 (2013), 313–374
- A. Grothendieck, “Sur quelques points d'algèbre homologique”, Tohoku Math. J. (2), 9 (1957), 119–221
- A. Grothendieck, “Categories fibrees et descente”, Revêtements etales et groupe fondamental, Seminaire de geometrie algebrique du Bois Marie 1960/1961 (SGA 1), Lecture Notes in Math., 224, Springer-Verlag, Berlin–New York, 1971, Exp. VI, 145–194
- A. Grothendieck, À la poursuite des champs, unpublished manuscript, 1983
- A. Grothendieck, Esquisse d'un programme, unpublished manuscript, 1984
- M. Hovey, Model categories, Math. Surveys Monogr., 63, Amer. Math. Soc., Providence, RI, 1999, xii+209 pp.
- П. Т. Джонстон, Теория топосов, Наука, М., 1986, 439 с.
- D. Kaledin, “How to glue derived categories”, Bull. Math. Sci., 8:3 (2018), 477–602
- Д. Б. Каледин, “Сопряженность в 2-категориях”, УМН, 75:5(455) (2020), 101–152
- D. Kaledin, Enhancement for categories and homotopical algebra, 2024, 595 pp.
- D. Kaledin, “Taming large categories”, São Paulo J. Math. Sci., 18:2 (2024), 773–800
- J. Lurie, Higher topos theory, Ann. of Math. Stud., 170, Princeton Univ. Press, Princeton, NJ, 2009, xviii+925 pp.
- M. Makkai, R. Pare, Accessible categories: the foundation of categorical model theory, Contemp. Math., 104, Amer. Math. Soc., Providence, RI, 1989, viii+176 pp.
- D. G. Quillen, Homotopical algebra, Lecture Notes in Math., 43, Springer-Verlag, Berlin–New York, 1967, iv+156 pp.
- C. L. Reedy, Homology of algebraic theories, Ph.D. thesis, Univ. of California, San Diego, 1974, 52 pp.
- C. Rezk, “A model for the homotopy theory of homotopy theory”, Trans. Amer. Math. Soc., 353:3 (2001), 973–1007
- Р. М. Свитцер, Алгебраическая топология – гомотопии и гомологии, Наука, М., 1985, 607 с.
- B. Toën, “Vers une axiomatisation de la theorie des categories superieures”, $K$-Theory, 34:3 (2005), 233–263
- J.-L. Verdier, Des categories derivees des categories abeliennes, With a preface by L. Illusie, edited and with a note by G. Maltsiniotis, Asterisque, 239, Soc. Math. France, Paris, 1996, xii+253 pp.
Arquivos suplementares
