On exponential algebraic geometry
- Authors: Kazarnovskii B.Y.1
-
Affiliations:
- Moscow Institute of Physics and Technology (National Research University), Higher School of Contemporary Mathematics
- Issue: Vol 80, No 1 (2025)
- Pages: 3-58
- Section: Articles
- URL: https://bakhtiniada.ru/0042-1316/article/view/306733
- DOI: https://doi.org/10.4213/rm10184
- ID: 306733
Cite item
Abstract
The set of roots of any finite system of exponential sums in the space $\mathbb{C}^n$ is called an exponential variety. We define the intersection index of varieties of complementary dimensions, and the ring of classes of numerical equivalence of exponential varieties with operations ‘addition-union’ and ‘multiplication-intersection’. This ring is analogous to the ring of conditions of the torus $(\mathbb{C}\setminus 0)^n$ and is called the ring of conditions of $\mathbb{C}^n$. We provide its description in terms of convex geometry. Namely, we associate an exponential variety with an element of a certain ring generated by convex polytopes in $\mathbb{C}^n$. We call this element the Newtonization of the exponential variety. For example, the Newtonization of an exponential hypersurface is its Newton polytope. The Newtonization map defines an isomorphism of the ring of conditions to the ring generated by convex polytopes in $\mathbb{C}^n$. It follows, in particular, that the intersection index of $n$ exponential hypersurfaces is equal to the mixed pseudo-volume of their Newton polytopes.Bibliography: 32 titles.
About the authors
Boris Yakovlevich Kazarnovskii
Moscow Institute of Physics and Technology (National Research University), Higher School of Contemporary Mathematics
Author for correspondence.
Email: kazbori@gmail.com
Doctor of physico-mathematical sciences, Doctor of technical sciences, no status
References
- J. F. Ritt, “On the zeros of exponential polynomials”, Trans. Amer. Math. Soc., 31:4 (1929), 680–686
- V. Avanissian, R. Gay, “Sur une transformation des fonctionnelles analytiques et ses applications aux fonctions entières de plusieurs variables”, Bull. Soc. Math. France, 103:3 (1975), 341–384
- M. Laurent, “Equations diophantiennes exponentielles”, Invent. Math., 78:2 (1984), 299–327
- J.-H. Evertse, H. P. Schlickewei, W. M. Schmidt, “Linear equations in variables which lie in a multiplicative group”, Ann. of Math. (2), 155:3 (2002), 807–836
- Б. Я. Казарновский, “Экспоненциальные аналитические множества”, Функц. анализ и его прил., 31:2 (1997), 15–26
- B. Zilber, “Exponential sums equations and the Schanuel conjecture”, J. London Math. Soc. (2), 65:1 (2002), 27–44
- Б. Я. Казарновский, А. Г. Хованский, А. И. Эстеров, “Многогранники Ньютона и тропическая геометрия”, УМН, 76:1(457) (2021), 95–190
- Б. Я. Казарновский, “Квазиалгебраическое кольцо условий пространства $mathbb C^n$”, Изв. РАН. Сер. матем., 86:1 (2022), 180–218
- P. McMullen, “The polytope algebra”, Adv. Math., 78:1 (1989), 76–130
- P. McMullen, “Separation in the polytope algebra”, Beitr. Algebra Geom., 34:1 (1993), 15–30
- P. McMullen, “On simple polytopes”, Invent. Math., 113:2 (1993), 419–444
- А. В. Пухликов, А. Г. Хованский, “Конечно-аддитивные меры виртуальных многогранников”, Алгебра и анализ, 4:2 (1992), 161–185
- M. Brion, “The structure of polytope algebra”, Tohoku Math. J. (2), 49:1 (1997), 1–32
- W. Fulton, B. Sturmfels, “Intersection theory on toric varieties”, Topology, 36:2 (1997), 335–353
- M. Brion, “Piecewise polynomial functions, convex polytopes and enumerative geometry”, Parameter spaces (Warsaw, 1994), Banach Center Publ., 36, Polish Acad. Sci. Inst. Math., Warsaw, 1996, 25–44
- Б. Я. Казарновский, “c-вееры и многогранники Ньютона алгебраических многообразий”, Изв. РАН. Сер. матем., 67:3 (2003), 23–44
- A. Esterov, “Tropical varieties with polynomial weights and corner loci of piecewise polynomials”, Mosc. Math. J., 12:1 (2012), 55–76
- A. Khovanskii, “Newton polyhedra and good compactification theorem”, Arnold Math. J., 7:1 (2021), 135–157
- Б. Я. Казарновский, “О нулях экспоненциальных сумм”, Докл. АН СССР, 257:4 (1981), 804–808
- Б. Я. Казарновский, “Многогранники Ньютона и корни систем экспоненциальных сумм”, Функц. анализ и его прил., 18:4 (1984), 40–49
- А. О. Гельфонд, “О среднем числе корней систем голоморфных почти периодических уравнений”, УМН, 39:1(235) (1984), 123–124
- А. Г. Хованский, Малочлены, Библ. матем., 2, Фазис, М., 1997, xii+217 с.
- C. De Concini, “Equivariant embeddings of homogeneous spaces”, Proceedings of the international congress of mathematicians (Berkeley, CA, 1986), v. 1, Amer. Math. Soc., Providence, RI, 1987, 369–377
- C. De Concini, C. Procesi, “Complete symmetric varieties. II. Intersection theory”, Algebraic groups and related topics (Kyoto/Nagoya, 1983), Adv. Stud. Pure Math., 6, North-Holland, Amsterdam, 1985, 481–513
- Д. Н. Ахиезер, “О действиях с конечным числом орбит”, Функц. анализ и его прил., 19:1 (1985), 1–5
- Б. Я. Казарновский, “Действие комплексного оператора Монжа–Ампера на кусочно линейных функциях и экспоненциальные тропические многообразия”, Изв. РАН. Сер. матем., 78:5 (2014), 53–74
- Б. Я. Казарновский, “О действии комплексного оператора Монжа–Ампера на кусочно линейных функциях”, Функц. анализ и его прил., 48:1 (2014), 19–29
- S. Alesker, “Hard Lefschetz theorem for valuations, complex integral geometry, and unitarily invariant valuations”, J. Differential Geom., 63:1 (2003), 63–95
- Б. Я. Казарновский, “Распределение нулей функций экспоненциального роста”, Матем. сб., 215:3 (2024), 70–79
- H. Weyl, “Mean motion”, Amer. J. Math., 60:4 (1938), 889–896
- J. Ax, “On Schanuel's conjectures”, Ann. of Math. (2), 93 (1971), 252–268
- E. Bombieri, D. Masser, U. Zannier, “Anomalous subvarieties – structure theorems and applications”, Int. Math. Res. Not. IMRN, 2007:19 (2007), rnm057, 33 pp.
Supplementary files
