Infinite sets can be Ramsey in the Chebyshev metric
- Authors: Kupavskii A.B.1,2, Sagdeev A.A.1, Frankl N.3
-
Affiliations:
- Moscow Institute of Physics and Technology (National Research University)
- Centre National de la Recherche Scientifique
- Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences
- Issue: Vol 77, No 3 (2022)
- Pages: 175-176
- Section: Articles
- URL: https://bakhtiniada.ru/0042-1316/article/view/133714
- DOI: https://doi.org/10.4213/rm10055
- ID: 133714
Cite item
Abstract
About the authors
Andrey Borisovich Kupavskii
Moscow Institute of Physics and Technology (National Research University); Centre National de la Recherche Scientifique
Email: kupavskii@yandex.ru
without scientific degree, no status
Arsenii Alekseevich Sagdeev
Moscow Institute of Physics and Technology (National Research University)
Email: sagdeevarsenii@gmail.com
Candidate of physico-mathematical sciences, Senior Researcher
Nóra Frankl
Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences
Email: n.frankl@lse.ac.uk
References
- R. L. Graham, B. L. Rothschild, J. H. Spencer, Ramsey theory, Wiley-Intersci. Ser. Discrete Math. Optim., 2nd ed., John Wiley & Sons, Inc., New York, 1990, xii+196 pp.
- A. M. Raigorodskii, Thirty essays on geometric graph theory, Springer, New York, 2013, 429–460
- P. Erdős, R. L. Graham, P. Montgomery, B. L. Rothschild, J. Spencer, E. G. Straus, J. Combin. Theory Ser. A, 14:3 (1973), 341–363
- P. Erdős, R. L. Graham, P. Montgomery, B. L. Rothschild, J. Spencer, E. G. Straus, Infinite and finite sets (Keszthely, 1973), Colloq. Math. Soc. Janos Bolyai, 10, North-Holland, Amsterdam, 1975, 529–557, 559–583
- I. Leader, P. A. Russell, M. Walters, J. Combin. Theory Ser. A., 119:2 (2012), 382–396
- P. Frankl, V. Rödl, J. Amer. Math. Soc., 3:1 (1990), 1–7
- I. Křiž, Proc. Amer. Math. Soc., 112:3 (1991), 899–907
- Р. И. Просанов, Матем. заметки, 103:2 (2018), 248–257
- А. А. Сагдеев, Пробл. передачи информ., 54:4 (2018), 82–109
- А. А. Сагдеев, Пробл. передачи информ., 55:4 (2019), 86–106
- E. Naslund, Bull. Lond. Math. Soc., 52:4 (2020), 687–692
- D. Conlon, J. Fox, Discrete Comput. Geom., 61:1 (2019), 218–225
- А. Б. Купавский, А. А. Сагдеев, УМН, 75:5(455) (2020), 191–192
- A. Kupavskii, A. Sagdeev, Forum Math. Sigma, 9 (2021), e55, 12 pp.
Supplementary files
