R. Thompson's group $F$ and the amenability problem
- 作者: Guba V.S.1
-
隶属关系:
- Vologda State University
- 期: 卷 77, 编号 2 (2022)
- 页面: 69-122
- 栏目: Articles
- URL: https://bakhtiniada.ru/0042-1316/article/view/133693
- DOI: https://doi.org/10.4213/rm10040
- ID: 133693
如何引用文章
详细
参考
- С. И. Адян, “Случайные блуждания на свободных периодических группах”, Изв. АН СССР. Сер. матем., 46:6 (1982), 1139–1149
- G. N. Arzhantseva, V. S. Guba, M. Lustig, J.-P. Preaux, “Testing Cayley graph densities”, Ann. Math. Blaise Pascal, 15:2 (2008), 233–286
- L. Bartholdi, “Amenability of groups is characterized by Myhill's theorem”, With an appendix by Dawid Kielak, J. Eur. Math. Soc. (JEMS), 21:10 (2019), 3191–3197
- J. M. Belk, K. S. Brown, “Forest diagrams for elements of Thompson's group $F$”, Internat. J. Algebra Comput., 15:5-6 (2005), 815–850
- M. G. Brin, “The ubiquity of Thompson's group $F$ in groups of piecewise linear homeomorphisms of the unit interval”, J. London Math. Soc. (2), 60:2 (1999), 449–460
- M. G. Brin, C. C. Squier, “Groups of piecewise linear homeomorphisms of the real line”, Invent. Math., 79:3 (1985), 485–498
- K. S. Brown, “Finiteness properties of groups”, J. Pure Appl. Algebra, 44:1-3 (1987), 45–75
- K. S. Brown, R. Geoghegan, “An infinite-dimentional torsion-free $FP_{infty}$ group”, Invent. Math., 77 (1984), 367–381
- J. Burillo, “Growth of positive words in Thompson's group $F$”, Comm. Algebra, 32:8 (2004), 3087–3094
- J. Burillo, Introduction to Thompson's group $F$, preprint, 2016, 85 pp.,par
- J. W. Cannon, W. J. Floyd, W. R. Parry, “Introductory notes on Richard Thompson's groups”, Enseign. Math. (2), 42:3-4 (1996), 215–256
- T. Ceccherini-Silberstein, M. Coornaert, Cellular automata and groups, Springer Monogr. Math., Springer-Verlag, Berlin, 2010, xx+439 pp.
- C. G. Chehata, “An algebraically simple ordered group”, Proc. London Math. Soc. (3), 2 (1952), 183–197
- Ching Chou, “Elementary amenable groups”, Illinois J. Math., 24:3 (1980), 396–407
- S. Cleary, J. Taback, “Thompson's group $F$ is not almost convex”, J. Algebra, 270:1 (2003), 133–149
- J. M. Cohen, “Cogrowth and amenability of discrete groups”, J. Funct. Anal., 48:3 (1982), 301–309
- M. M. Day, “Amenable semigroups”, Illinois J. Math., 1:4 (1957), 509–544
- П. де ля Арп, Р. И. Григорчук, Т. Чекерини-Сильберстайн, “Аменабельность и парадоксальные разбиения для псевдогрупп и дискретных метрических пространств”, Алгебра. Топология. Дифференциальные уравнения и их приложения, Сборник статей. К 90-летию со дня рождения академика Льва Семеновича Понтрягина, Труды МИАН, 224, Наука, М., 1999, 68–111
- V. Dlab, “On a family of simple ordered groups”, J. Austral. Math. Soc., 8:3 (1968), 591–608
- J. Dydak, “A simple proof that pointed FANR-spaces are regular fundamental retracts of ANR's”, Bull. Acad. Polon Sci. Ser. Sci. Math. Astronom. Phys., 25:1 (1977), 55–62
- J. Dydak, “1-movable continua need not be pointed 1-movable”, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 25:6 (1977), 559–562
- M. Elder, E. Fusy, A. Rechnitzer, “Counting elements and geodesics in Thompson's group $F$”, J. Algebra, 324:1 (2010), 102–121
- E. Folner, “On groups with full Banach mean value”, Math. Scand., 3 (1955), 243–254
- S. B. Fordham, Minimal length elements of Thompson's group $F$, PhD thesis, Brigham Young Univ., 1995, 88 pp.
- P. Freyd, A. Heller, “Splitting homotopy idempotents II”, J. Pure Appl. Algebra, 89:1-2 (1993), 93–106
- R. Geoghegan, “Open problems in infinite-dimensional topology”, 1979 version, Topology Proc., 4:1 (1979), 287–338
- S. M. Gersten, “Selected problems”, Combinatorial group theory and topology (Alta, UT, 1984), Ann. of Math. Stud., 111, Princeton Univ. Press, Princeton, NJ, 1987, 545–551
- G. Golan, M. Sapir, “On subgroups of R. Thompson's group $F$”, Trans. Amer. Math. Soc., 369:12 (2017), 8857–8878
- G. Golan, M. Sapir, “On Jones' subgroup of R. Thompson group $F$”, J. Algebra, 470 (2017), 122–159
- G. Golan, M. Sapir, “On the stabilizers of finite sets of numbers in the R. Thompson group $F$”, Алгебра и анализ, 29:1 (2017), 70–110
- Ф. Гринлиф, Инвариантные средние на топологических группах и их приложения, Мир, М., 1973, 136 с.
- Р. И. Григорчук, “Симметричные случайные блуждания на дискретных группах”, Многокомпонентные случайные системы, Наука, М., 1978, 132–152
- Р. И. Григорчук, “Степени роста конечно-порожденных групп и теория инвариантных средних”, Изв. АН СССР. Сер. матем., 48:5 (1984), 939–985
- Р. И. Григорчук, “О проблеме М. Дэя об неэлементарных аменабельных группах в классе конечно-определенных групп”, Матем. заметки, 60:5 (1996), 774–775
- Р. И. Григорчук, “Пример конечно определенной аменабельной группы, не принадлежащей классу $EG$”, Матем. сб., 189:1 (1998), 79–100
- V. S. Guba, “Polynomial upper bounds for the Dehn function of R. Thompson's group $F$”, J. Group Theory, 1:2 (1998), 203–211
- V. S. Guba, “Polynomial isoperimetric inequalities for Richard Thompson's groups $F$, $T$, and $V$”, Algorithmic problems in groups and semigroups (Lincoln, NE, 1998), Trends Math., Birkhäuser Boston, Boston, MA, 2000, 91–120
- V. S. Guba, “On the properties of the Cayley graph of Richard Thompson's group $F$”, Internat. J. Algebra Comput., 14:5-6 (2004), 677–702
- V. S. Guba, “The Dehn function of Richard Thompson's group $F$ is quadratic”, Invent. Math., 163:2 (2006), 313–342
- V. S. Guba, “On the density of Cayley graphs of R. Thompson's group $F$ in symmetric generators”, Internat. J. Algebra Comput., 31:5 (2021), 969–981
- V. S. Guba, “On the Ore condition for the group ring of R. Thompson's group $F$”, Comm. Algebra, 49:11 (2021), 4699–4711
- V. Guba, Evacuation schemes on Cayley graphs and non-amenability of groups, submitted to Internat. J. Algebra Comput., 2021, 17 pp.
- В. С. Губа, С. М. Львовский, “Парадокс” Банаха–Тарского, 2-е изд., МЦНМО, М., 2016, 48 с.
- V. S. Guba, M. V. Sapir, “The Dehn function and a regular set of normal forms for R. Thompson's group $F$”, J. Austral. Math. Soc. Ser. A, 62:3 (1997), 315–328
- V. Guba, M. Sapir, Diagram groups, Mem. Amer. Math. Soc., 130, № 620, Amer. Math. Soc., Providence, RI, 1997, 117 pp.
- В. С. Губа, М. В. Сапир, “О подгруппах группы Р. Томпсона $F$ и других групп диаграмм”, Матем. сб., 190:8 (1999), 3–60
- V. S. Guba, M. V. Sapir, “Rigidity properties of diagram groups”, Internat. J. Algebra Comput., 12:1-2 (2002), 9–17
- V. S. Guba, M. V. Sapir, “Diagram groups and directed $2$-complexes: homotopy and homology”, J. Pure Appl. Algebra, 205:1 (2006), 1–47
- V. S. Guba, M. V. Sapir, “Diagram groups are totally orderable”, J. Pure Appl. Algebra, 205:1 (2006), 48–73
- M. Hall Jr., “Distinct representatives of subsets”, Bull. Amer. Math. Soc., 54:10 (1948), 922–926
- P. Hall, “On representation of subsets”, J. London Math. Soc., 10 (1935), 26–30
- P. R. Halmos, H. E. Vaughan, “The marriage problem”, Amer. J. Math., 72:1 (1950), 214–215
- G. Higman, Finitely presented infinite simple groups, Notes on Pure Math., 8, Austral. Nat. Univ., Canberra, 1974, vii+82 pp.
- H. Kesten, “Symmetric random walks on groups”, Trans. Amer. Math. Soc., 92:2 (1959), 336–354
- H. Kesten, “Full Banach mean values on countable groups”, Math. Scand., 7 (1959), 146–156
- R. McKenzie, R. J. Thompson, “An elementary construction of unsolvable word problems in group theory”, Word problems: decision problems and the Burnside problem in group theory (Irvine, CA, 1969), Stud. Logic Found. Math., 71, North-Holland, Amsterdam, 1973, 457–478
- L. Mirsky, Transversal theory. An account of some aspects of combinatorial mathematics, Math. Sci. Eng., 75, Academic Press, New York–London, 1971, ix+255 pp.
- J. T. Moore, “Fast growth in the Folner function for Thompson's group $F$”, Groups Geom. Dyn., 7:3 (2013), 633–651
- Дж. фон Нейман, “К общей теории меры”, Избранные труды по функциональному анализу, т. 1, Наука, М., 1987, 171–200
- А. Ю. Ольшанский, “К вопросу о существовании инвариантного среднего на группе”, УМН, 35:4(214) (1980), 199–200
- A. Yu. Ol'shanskii, M. V. Sapir, “Non-amenable finitely presented torsion-by-cyclic groups”, Publ. Math. Inst. Hautes Etudes Sci., 96 (2003), 43–169
- O. Ore, “Linear equations in non-commutative fields”, Ann. of Math. (2), 32:3 (1931), 463–477
- Г. Полиа, Г. Сеге, Задачи и теоремы из анализа, Часть 1. Ряды, интегральное исчисление, теория функций, 3-е изд., Наука, М., 1978, 392 с.
- M. V. Sapir, Combinatorial algebra: syntax and semantics, With contributions by V. S. Guba, M. V. Volkov, Springer Monogr. Math., Springer, Cham, 2014, xvi+355 pp.
- Ж.-П. Серр, “Деревья, амальгамы и ${SL}_2$”, Математика, 18:1 (1974), 3–51
- R. P. Stanley, Enumerative combinatorics, v. 2, Cambridge Stud. Adv. Math., 62, 1999, xii+581 pp.
- R. Szwarc, “A short proof of the Grigorchuk–Cohen cogrowth theorem”, Proc. Amer. Math. Soc., 106:3 (1989), 663–665
- D. Tamari, “A refined classification of semi-groups leading to generalized polynomial rings with a generalized degree concept”, Proceedings of the international congress of mathematicians (Amsterdam, 1954), v. 1, P. Noordhoff N. V., Groningen; North-Holland Publishing Co., Amsterdam, 1957, 439–440
- S. Wagon, The Banach–Tarski paradox, Encyclopedia Math. Appl., 24, Camdridge Univ. Press, Cambridge, 1985, xvi+251 pp.
补充文件
