Том 92, № 8 (2023)
Статьи
Последние достижения в химии лигнинов: фундаментальные исследования и практическое применение
Аннотация
Лигнин — один из самых распространенных биополимеров на Земле — является постоянным объектом многочисленных фундаментальных и прикладных исследований. Переработка лигнина представляет собой актуальную задачу биорефайнинга. Работы, опубликованные за последние годы, касаются преимущественно различных направлений валоризации технических лигнинов, а также применения лигнина в медицине и фармакологии, 3D-печати, в синтезе углеродных волокон и биотоплива. В области фундаментальных исследований обращают на себя внимание работы, посвященные биосинтезу лигнина. Данный обзор посвящен последним достижениям в химии лигнина. Обсуждены актуальные данные о строении и биосинтезе лигнина. Подробно проанализированы направления валоризации лигнина: пиролиз и карбонизация, получение композитов, сополимеров и наночастиц, синтез практически значимых низкомолекулярных веществ, получение гидро- и аэрогелей и др. Отмечается, что в настоящее время практическое применение лигнина развивается в двух направлениях: валоризации технических лигнинов как таковых, без предварительной деполимеризации и валоризации через низкомолекулярные соединения, главным образом мономеры, образующиеся в результате деструкции лигнинов различными методами. Библиография — 130 ссылок.
Успехи химии. 2023;92(8):RCR5082
RCR5082
Развитие методологии single-atom catalyst в современном катализе
Аннотация
В обзоре анализируется развитие методологии "одноатомных" (single-atom) катализаторов от "моноцентровых" (single-site) до "одноатомных сплавных" (single-atom alloy) систем. Подробно рассмотрены вопросы получения и характеризации "одноатомных" катализаторов, а также их использование в ряде ключевых каталитических реакций, включая гидрирование алкиновых соединений. Впервые проанализирована возможность тонкой настройки структуры поверхности "одноатомных сплавных" каталитических систем с помощью адсорбционно-индуцированной сегрегации.Библиография — 312 ссылок
Успехи химии. 2023;92(8):RCR5087
RCR5087
Каталитические свойства нанозимов, имитирующих пероксидазу
Аннотация
Данный обзор представляет собой первую попытку критического анализа каталитических свойств нанозимов, имитирующих фермент пероксидазу. С этой целью рассмотрены основные факторы, влияющие на активность наночастиц, и проводится систематизация каталитических свойств, позволяющая достоверно сравнивать различные наноматериалы. Наибольшую каталитическую активность в реакции восстановления пероксида водорода (H2O2) демонстрируют азот-координированные атомы железа (FeN4, FeN5). Тем не менее, основными недостатками нанозимов на основе металлов или оксидов металлов, а также "одноатомных нанозимов", являются их дополнительные активности в реакциях восстановления кислорода и дисмутации H2O2, что существенно ограничивает возможность их практического применения. Наночастицы, каталитически синтезированные из наиболее эффективного электрокатализатора (берлинской лазури), помимо высочайшей каталитической активности демонстрируют ферментативную селективность. Это может указывать на одновременный перенос электронов на H2O22 от разных атомов железа. Таким образом, помимо синтезируемых в настоящее время катализаторов, биметаллические структуры (подобные структурам Fe–Fe) представляются перспективными для синтеза "одноатомных" нанозимов. Библиография — 121 ссылка.
Успехи химии. 2023;92(8):RCR5088
RCR5088
Успехи химии 1,2,3,4-тетразинов
Аннотация
Экспериментальная и теоретическая химия 1,2,3,4-тетразинов активно развивается последние 20 лет. Всё возрастающий интерес к этому классу соединений связан с тем, что 1,2,3,4-тетразиновый цикл является перспективным "строительным блоком" для создания высокоэнергетических и физиологически активных веществ. В обзоре рассмотрены различные типы 1,2,3,4-тетразинов: полностью ненасыщенные неаннелированные тетразины и их N-оксиды; тетразины с заместителями при атомах азота; аннелированные тетразины с общим для двух гетероциклов атомом азота; 1,2,3,4-тетразин-1,3-диоксиды, аннелированные бензольным, пиридиновым, 1,2,3-триазольным и 1,2,5-оксадиазольным циклами, а также 1,2,3,4-тетразин-1,3-диоксид, аннелированный вторым 1,2,3,4-тетразин-1,3-диоксидным циклом. Обсуждены методы синтеза и реакционная способность этих соединений, их кристаллографические особенности, спектральные характеристики и термическая стабильность. Представлены результаты квантово-химических исследований производных 1,2,3,4-тетразина. Рассмотрена перспектива применения 1,2,3,4-тетразинов в качестве энергоемких веществ. Библиография — 189 ссылок.
Успехи химии. 2023;92(8):RCR5089
RCR5089

