Новая парадигма для “мирного атома”. Взгляд с точки зрения иерархии источников энергии и фундаментальной безопасности
- Авторы: Ли Н.1
-
Учреждения:
- Transform Insight Partners
- Выпуск: Том 192, № 11 (2022)
- Страницы: 1231-1274
- Раздел: Конференции и симпозиумы. Форум «Uspekhi-2021»: изменение климата и проблемы глобальной энергетики
- URL: https://bakhtiniada.ru/0042-1294/article/view/256692
- DOI: https://doi.org/10.3367/UFNr.2021.08.039082
- ID: 256692
Цитировать
Полный текст
Аннотация
Список литературы
- Kuhn T. S., The Structure of Scientific Revolutions, Univ. of Chicago Press, Chicago, IL, 1962
- The Future of the Nuclear Fuel Cycle, MIT Energy Initiative. An Interdisciplinary MIT Study. MIT, 2011
- Murogov V. M., Nucl. Energy Technol., 5:3 (2019), 241
- Li N., “A paradigm shift needed for nuclear reactors: from economies of unit scale to economies of production scale”, Proc. of Intern. Congress on Advances in Nuclear Power Plants, ICAPP'09 (Tokyo, Japan, May 10-14, 2009)
- Li N., Advances in Small Modular Reactor Technology Developments, A Supplement to: IAEA Advanced Reactors Information System (ARIS) 2020 ed. (Vienna: IAEA, 2020) and SMR publications in 2011, 2012, 2014, 2016, and 2018, 2020
- Ux Consulting, Small Modular Reactor Assessments, 2010
- Ux Consulting, Small Modular Reactor Market Outlook, 2013
- Ingersoll D. T., Carelli M. D. (Eds.), Handbook of Small Modular Nuclear Reactors, 1st ed., Woodhead Publ., Oxford, 2014
- Small Modular Reactors: Nuclear Energy Market Potential for Near-term Deployment, Nuclear Energy Agency. OECD. NEA, 2016
- Stokes G. M. et al., American Nuclear Energy at the Crossroads, Univ. of California, Santa Barbara, CA, 2017, Novim Group
- Reinventing Construction: A Route to Higher Productivity, Report. McKinsey Global Institute. Reinventing construction through a productivity revolution, 2017
- Solving the Productivity Puzzle. The Role of Demand and the Promise of Digitization., Report, McKinsey and Company, 2018
- Ingersoll E., Gogan K., Missing Link to a Livable Climate: How Hydrogen-Enabled Synthetic Fuels Can Help Deliver the Paris Goals, Lucid Catalyst, Terra Praxis, 2020
- Weinberg A. M. et al., The Second Nuclear Era: A New Start for Nuclear Power, Ed. R. Manning, Praeger, New York, 1985
- Spiewak I., Weinberg A. M., Annu. Rev. Energy, 10 (1985), 431
- Weinberg A. M., The First Nuclear Era: The Life and Times of a Technological Fixer, AIP Press, New York, 1997
- Weinberg A. M., Science, 186 (1974), 205
- Weinberg A. M., Minerva, 10 (1972), 209
- Weinberg A. M., Science, 177 (1972), 211
- Simon H. A., The Sciences of the Artificial, 1st ed., MIT Press, Cambridge, MA, 1969
- Newell A., Simon H. A., Human Problem Solving, Prentice-Hall, Englewood Cliffs, NJ, 1972
- Simon H. A., “The Science of Design: Creating the Artificial”, Designing the Immaterial Society, Design Issues, 4, no. 1/2, MIT Press, Cambridge, MA, 1988, 67–82
- Anderson P. W., Science, 177 (1972), 393
- Anderson P. W., More and Different: Notes from a Thoughtful Curmudgeon, World Scientific, Singapore, 2011
- Wilczek F., A Beautiful Question: Finding Nature's Deep Design, Penguin Books, New York, 2016
- Wilczek F., “Physical foundations of future technology”, Megatech: Technology in 2050, The Economist Books, PublicAffairs, New York, 2017
- Waldrop M. M., Complexity: the Emerging Science at the Edge of Order and Chaos, Simon and Schuster, New York, 1992
- West G., Scale: The Universal Laws of Growth, Innovation, Sustainability, and the Pace of Life in Organisms, Cities, Economics, and Companies, Penguin Press, New York, 2017
- Bejan A., Shape and Structure, from Engineering to Nature, Cambridge Univ. Press, New York, 2000
- Romer P. M., J. Political Economy, 98:5, Pt. 2 (1990), S71
- Romer P. M., J. Economic Perspectives, 8:1 (1994), 3
- Greenspan E. (Ed.-in-Chief), Encyclopedia of Nuclear Energy, Elsevier, Amsterdam, 2021
- International Atomic Energy Agency, PRIS Power Reactor Information System
- Nuclear Power Reactors in the World, Reference Data Series, No. 2, 2020 ed., International Atomic Energy Agency, Vienna, 2020
- International Atomic Energy Agency, ARIS Advanced Reactors Information System
- A Technology Roadmap for Generation IV Nuclear Energy Systems, U.S. DOE Nuclear Energy Research Advisory Committee and the Generation IV Intern. Forum, GIF-002-00, 2002
- Generation IV International Forum, Technology Roadmap Update for Generation IV Nuclear Energy Systems, OECD Nuclear Energy Agency, 2014
- International Atomic Energy Agency, International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO), по состоянию на март 2021 г.
- International Atomic Energy Agency, INPRO Methodology for Sustainability Assessment of Nuclear Energy Systems: Safety of Nuclear Reactors. IAEA-TECDOC-1902, 2020
- Atlantic Council Task Force on US Nuclear Energy Leadership, US Nuclear Energy Leadership: Innovation and the Strategic Global Challenge, Atlantic Council Global Energy Center, 2019
- U.S. DOE, Advanced Reactor Demonstration Program, 2021
- Idaho National Laboratory (INL), Versatile Test Reactor - Solving Energy Challenges through Science, 2021
- U.S. DOE, Accident Tolerant Fuels, 2021
- Kempfer J., Allen T.
- World Nuclear Performance Report, 2020 ed., No. 2020/008, World Nuclear Association, London, 2020
- ElBaradei M., The Enduring Lessons of Chernobyl, IAEA, Vienna, 2005
- Taleb N. N., The Black Swan: the Impact of the Highly Improbable, Random House, New York, 2007
- Ritchie H., Roser M., Energy, Our World in Data, 2020, accessed in March, 2021
- Global Warming of $1.5^circ C$, Special Report, International Panel on Climate Change, 2018
- International Energy Agency, World Energy Outlook 2020, Paris, IEA, 2020
- International Energy Agency, Nuclear Power in a Clean Energy System, Paris, IEA, 2019
- OECD - Nuclear Energy Agency, Nuclear Energy: Combating Climate Change, Paris, NEA, 2015
- International Atomic Energy Agency, Climate Change and Nuclear Power 2020, Vienna, IAEA, 2020
- MIT Energy Initiative (MITEI), The Future of Nuclear Energy in a Carbon-Constrained World - An Interdisciplinary MIT Study, MIT, 2018
- Climate Interactive, En-ROADS, Online, 2021
- Hecker S. S. (Ed.), Doomed to Cooperate: How American and Russian Scientists Joined Forces to Avert Some of the Greatest Post-Cold War Nuclear Dangers, Bathtub Row Press, Los Alamos, NM, 2016
- Hecker S. S., Kassianova A. A., The future of global nuclear power through the eyes of young Russian and American professionals, Bull. Atomic Scientists (June 20, 2019), and the featured articles
- “Nuclear technology's role in the world's energy supply is shrinking. Anniversaries of the Fukushima and Chernobyl disasters highlight the challenges of relying on nuclear power to cut net carbon emissions to zero”, (09 March 2021) Editorial, Nature, 2001
- Eisenhower D. D., “Atoms for Peace Speech”, The 470th Plenary Meeting of the United Nations General Assembly, 8 December 1953
- Hirschberg S. et al., Comparison of Severe Accident Risks in Fossil, Nuclear and Hydro Electricity Generation, Paul Scherrer Institute, Villigen, 2001
- Ritchie H., What are the safest and cleanest sources of energy?, Our World in Data, 2020
- Slovic P., Science, 236 (1987), 280
- Gregory R., Mendelsohn R., Risk Analysis, 13:3 (1993), 259
- Gregory R., Flynn J., Slovic P., Am. Scientist, 83:3 (1995), 220
- Slovic P., “Trust, emotion, sex, politics, and science: Surveying the risk-assessment battlefield”, Environment, Ethics, and Behavior: The Psychology of Environmental Valuation and Degradation, M. H. Bazerman et al., New Lexington Press, San Francisco, 1997, 277–313
- IAEA, Milestones in the Development of a National Infrastructure for Nuclear Power, IAEA Nuclear Energy Series NBG-G-3.1, Rev.1, 2015
- Atlantic Council Task Force on US Nuclear Energy Leadership: Innovation and the Strategic Global Challenge, Global Energy Center, 2019
- Nagy B. et al., PLoS One, 8:2 (2013), e52669
- Farmer J. D., Lafond F., Res. Policy, 45:3 (2016), 647
- Smil V., Germany's Energiewende, 20 Years Later, IEEE Sprectrum, 2020
- Way R., Mealy P., Farmer J. D., Estimating the costs of energy transition scenarios using probabilistic forecasting methods, INET Oxford Working Paper No. 2021-01, Institute for New Economic Thinking at the Oxford Martin School, Oxford, 2020
- McNerney J. et al., Proc. Natl. Acad. Sci. USA, 108 (2011), 9008
- Nuclear Threat Initiative (NTI), Proliferation Risks of Nuclear Power Programs, NTI, 2007
- Davies R. V. et al., Nature, 203 (1964), 1110
- Liu C. et al., Nat. Energy, 2 (2017), 17007
- Dungan K. et al., Prog. Nucl. Energy, 99 (2017), 81
- Yuan Y. et al., Nat. Sustain., 4 (2021), 708
- Le Quere C. et al., Earth Syst. Sci. Data, 6:1 (2014), 235
- World Nuclear Association, Radioactive Waste - Myths and Realities, Updated 2021
- Office of Nuclear Energy, 5 Fast Facts about Spent Nuclear Fuel, U.S. DOE, 2021
- Curtis T. L. et al., A Circular Economy for Solar Photovoltaic System Materials: Drivers, Barriers, Enables, and U.S. Policy Considerations, Technical Report NREL/TP-6A20-74550, National Renewable Energy Laboratory, Golden, CO, 2021
- Xu Y. et al., Waste Management, 75 (2018), 450
- Moran E. F. et al., Proc. Natl. Acad. Sci. USA, 115 (2018), 11891
- Li N., Energy Policy, 36:6 (2008), 2212
- Rasmussen N. C., Annu. Rev. Energy, 6 (1981), 123
- U.S. NRC, Probabilistic Risk Assessment (PRA)
- Pedersen T., IAEA Bull., 31:3 (1989), 25
- Taleb N. N., Antifragile: Things That Gain From Disorder, Random House, New York, 2012
- IAEA ARIS. KLT-40S, JSC Afrikantov OKB Mechnical Engineering (OKBM), Last update 23-04-2013
- Beliaev V., Polunichev V., Basic safety principles of KLT-40C reactor plants, IAEA INIS, 1998
- NuScale Power, One Plant Does it All - Simultaneously, 2021
- Ed Cummins, Westinghouse - AP1000 Plant Overview, IAEA INIS, 2014
- Wright T. P., J. Aeronaut. Sci., 3 (1936), 122
- Tribe M., Alpine R. L. W., Eng. Costs Production Economics, 10 (1986), 271
- Christensen L. R., Greene W. H., J. Political Economy, 84:4, Pt. 1 (1976), 655
- Laughlin R. B., Pines D., Proc. Natl. Acad. Sci. USA, 97:1 (2000), 28
- Lee J. C., Nuclear Reactor Physics and Engineering, John Wiley and Sons, New York, 2020
- Todreas N. E., Kazimi M. S., Nuclear Systems I: Thermal Hydraulic Fundamentals, CRC Press, Boca Raton, FL, 1989
- Todreas N. E., Kazimi M. S., Nuclear Systems II: Elements of Thermal Hydraulic Design, Taylor and Francis, New York, 1990
- Oklo, What would you do with a MW-decade of clean energy?, Accessed in May 2021
- Ultra Safe Nuclear, Reliable Energy Anywhere. 2021, Accessed in May 2021
- U.S. DOE, New MARVEL Project Aims to Supercharge Microreactor Deployment, Acces sed in May 2021
- Brandt D. E., Wesorick R. R., GE Gas Turbine Design Philosophy, GE Power Generation GER-3434D, GE Industrial and Power Systems, Schenectady, NY, 1994
- Turbomachinery International (TMI), Worldwide Gas Turbine Forecast, Turbomachinery Magazine Handbook, 2019
- Airbus, Global Market Forecast 2019-2038, 2018
- Boeing, Commercial Market Outlook 2020-2039, 2019
- UNCTAD, Review of Maritime Transport, 2020
- Дробински Ф., Танте А., УФН, 192:11 (2022), 1191
- Net Zero by 2050. A Roadmap for the Global Energy Sector, IEA, 2021
- Gates B., How to Avoid a Climate Disaster: The Solutions We Have and the Breakthroughs We Need, Alfred A. Knopf, New York, 2021
- Gates B., Rethinking Deployment Scenarios to Enable Large-Scale, Demand-Driven Non-Electricity Markets for Advanced Reactors, Report ID 3002018348, Electric Power Research Institute, Palo Alto, CA, 2021
- Таджима Т., Некас А., Массар Т., Гейлс С., УФН, 192:11 (2022), 1280
Дополнительные файлы
