Photonics approaches to the implementation of neuromorphic computing
- Authors: Musorin A.I.1, Shorokhov A.S.1, Chezhegov A.A.1, Baluyan T.G.1, Safronov K.R.1, Chetvertukhin A.V.1, Grunin A.A.1, Fedyanin A.A.1
-
Affiliations:
- Lomonosov Moscow State University, Faculty of Physics
- Issue: Vol 193, No 12 (2023)
- Pages: 1284-1297
- Section: Reviews of topical problems
- URL: https://bakhtiniada.ru/0042-1294/article/view/256646
- DOI: https://doi.org/10.3367/UFNr.2023.07.039505
- ID: 256646
Cite item
Full Text
Abstract
Keywords
About the authors
Alexander Igorevich Musorin
Lomonosov Moscow State University, Faculty of PhysicsCandidate of physico-mathematical sciences, no status
Aleksandr Sergeevich Shorokhov
Lomonosov Moscow State University, Faculty of Physics
Email: shorokhov@nanolab.phys.msu.ru
Scopus Author ID: 56311591400
ResearcherId: H-5523-2015
Alexander Andreevich Chezhegov
Lomonosov Moscow State University, Faculty of Physics
Tigran Grigor'evich Baluyan
Lomonosov Moscow State University, Faculty of Physics
Kirill Romanovich Safronov
Lomonosov Moscow State University, Faculty of Physics
Email: safronov@nanolab.phys.msu.ru
Artem Vyacheslavovich Chetvertukhin
Lomonosov Moscow State University, Faculty of Physics
ORCID iD: 0000-0002-0819-6525
Scopus Author ID: 55055469300
ResearcherId: A-8885-2010
Candidate of physico-mathematical sciences
Andrey Anatol'evich Grunin
Lomonosov Moscow State University, Faculty of Physics
Andrei Anatol'evich Fedyanin
Lomonosov Moscow State University, Faculty of Physics
Email: fedyanin@nanolab.phys.msu.ru
ORCID iD: 0000-0003-4708-6895
Scopus Author ID: 7005109296
ResearcherId: G-1803-2010
Doctor of physico-mathematical sciences, Professor
References
- Xu R. et al., Opt. Laser Technol., 136 (2021), 106787
- Markovic D. et al., Nat. Rev. Phys., 2 (2020), 499
- Xu M. et al., Adv. Funct. Mater., 30 (2020), 2003419
- Zhang J. et al., Adv. Intell. Syst., 2 (2020), 1900136
- Sunny F. P. et al., ACM J. Emerg. Technol. Comput. Syst., 17:4 (2021), 61
- Yao K., Unni R., Zheng Y., Nanophotonics, 8 (2019), 339
- Ferreira de Lima Th. et al., Nanophotonics, 6 (2017), 577
- Goodman J. W., Dias A. R., Woody L. M., Opt. Lett., 2 (1978), 1
- Zuo Y. et al., Optica, 6 (2019), 1132
- Liu J. et al., PhotoniX, 2 (2021), 5
- Shastri B. J. et al., Nat. Photon., 15 (2021), 102
- Silicon Photonics. From Technologies to Markets, Market and Technology Report 2021. Yole Group
- Silicon Photonics 2022, Market and Technology Trends. Yole Group
- GlobalFoundries Announces Next Generation in Silicon Photonics Solutions and Collaborates with Industry Leaders to Advance a New Era of More in the Data Center, March 7, 2022. GlobalFoundries Press Releases
- Huang C. et al., Adv. Phys. X, 7 (2022), 1981155
- Kirtas M. et al., “Early detection of DDoS attacks using photonic neural networks”, 2022 IEEE 14th Image, Video, and Multidimensional Signal Processing Workshop (IVMSP), IEEE, Piscataway, NJ, 2022
- Clements W. R. et al., Optica, 3 (2016), 1460
- Al-Qadasi M. A. et al., APL Photon., 7 (2022), 020902
- Shen Y. et al., Nat. Photon., 11 (2017), 441
- Bandyopadhyay S., Hamerly R., Englund D., Optica, 8 (2021), 1247
- Envise. Lightmatter
- High-efficiency multi-slot waveguide nano-opto-electromechanical phase modulator, Grant US-11281068-B2
- Feng Y. et al., Opt. Express, 28 (2020), 38206
- Baghdadi R. et al., Opt. Express, 29 (2021), 19113
- Jacob B. et al., Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, CVPR (Salt Lake City, UT, USA, June 18-22, 2018), IEEE, Piscataway, NJ, 2018, 2704
- Machupalli R., Hossain M., Mandal M., Microprocess. Microsyst., 89 (2022), 104441
- Lightelligence
- Lightelligence. PACE: Photonic Arithmetic Computing Engine
- Qu Y. et al., Sci. Bull., 65 (2020), 1177
- Chao C.-Y., Fung W., Guo L. J., IEEE J. Sel. Top. Quantum Electron., 12 (2006), 134
- Feldmann J. et al., Nature, 589 (2021), 52
- Burr G. W. et al., IEEE J. Emerg. Sel. Top. Circuits Syst., 6 (2016), 146
- Wu C. et al., Nat. Commun., 12 (2021), 96
- Prabhu M. et al., Optica, 7 (2020), 551
- Lucas A., Front. Phys., 2 (2014), 5
- Ахманов С. А., Никитин С. Ю., Физическая оптика, 2-е изд., Изд-во Московского ун-та, М., 2004
- Goodman J. W., Introduction to Fourier Optics, Roberts and Co., Englewood, CO, 2005
- Lin X. et al., Science, 361 (2018), 1004
- Yann LeCun's Home Page
- Qian C. et al., Light Sci. Appl., 9 (2020), 59
- Luo Y. et al., Light Sci. Appl., 8 (2019), 112
- Mengu D. et al., IEEE J. Sel. Top. Quantum Electron., 26 (2020), 3700114
- Papers with Code. Fashion-MNIST
- Papers with Code. Residual Network
- He K. et al., “Deep residual learning for image recognition”, Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, CVPR (Las Vegas, NV, USA, 27-30 June 2016), IEEE, Piscataway, NJ, 2016, 770
- Kulce O. et al., Light Sci. Appl., 10 (2021), 25
- Luo X. et al., Light Sci. Appl., 11 (2022), 158
- Miscuglio M. et al., Optica, 7 (2020), 1812
- The CIFAR-10 dataset
- Colburn S. et al., Appl. Opt., 58 (2019), 3179
- Krizhevsky A., Sutskever I., Hinton G. E., Advances in Neural Information Processing Systems, v. 25, F. Pereira et al., Curran Associates Inc., Red Hook, NY, 2012, 1097
- Kaggle. Datasets. Cats-vs-Dogs: image dataset for binary classification
- Yan T. et al., Phys. Rev. Lett., 123 (2019), 023901
Supplementary files
