


卷 63, 编号 4 (2016)
- 年: 2016
- 文章: 10
- URL: https://bakhtiniada.ru/0040-6015/issue/view/10495
Steam Turbines, Gas Turbines, Combined-Cycle Plants and Their Accessories
Steam injection impact on the performances of nozzle grid in wet-vapor stream
摘要
Results of experimental study of the efficiency of intra-channel steam injection on the surface of nozzle grids of steam turbines operating in the wet steam flow are presented. The main objective of this study was to determine the basic mechanisms of the steam injection impact on the kinematic characteristics of the liquid phase outside an isolated nozzle grid. The kinetic energy loss distributions of the liquid phase and sliding coefficients of droplets along the grid spacing depending on the injected steam pressure at different theoretical values of the Mach number and the initial wetness are presented. The efficiency index was determined taking into account the kinetic energy loss distribution for the liquid phase along the grid spacing, depending on the pressure reduction on the slot. The investigation was conducted using the total pressure probe placed behind the object under study. The average diameters of large droplets of erosion-hazardous liquid phase at a certain distance from the grid were determined. In measuring the characteristics of the liquid phase particles, a laser diagnostics system of streams was used, based on the “POLIS” complex. The main advantage of this complex is the fact that it is contactless, which allows one to measure characteristics of the liquid phase particles without any distortion of the results and aerodynamic influence on the main stream. It is established that an intra-channel steam injection promotes the destruction of liquid film that formed as a result of the condensation of liquid droplets on the surfaces of nozzle blades, as well as the alignment of the velocity field and the average size reduction of droplets behind the grid. The experimental results have shown that the efficiency of injection (relative to the reduction of the amount of erosion-hazardous droplets) of hot steam substantially depends on the flowing regime of wet steam.



Calculation of gas turbine characteristic
摘要
The reasons and regularities of vapor flow and turbine parameter variation depending on the total pressure drop rate π* and rotor rotation frequency n are studied, as exemplified by a two-stage compressor turbine of a power-generating gas turbine installation. The turbine characteristic is calculated in a wide range of mode parameters using the method in which analytical dependences provide high accuracy for the calculated flow output angle and different types of gas dynamic losses are determined with account of the influence of blade row geometry, blade surface roughness, angles, compressibility, Reynolds number, and flow turbulence. The method provides satisfactory agreement of results of calculation and turbine testing. In the design mode, the operation conditions for the blade rows are favorable, the flow output velocities are close to the optimal ones, the angles of incidence are small, and the flow “choking” modes (with respect to consumption) in the rows are absent. High performance and a nearly axial flow behind the turbine are obtained. Reduction of the rotor rotation frequency and variation of the pressure drop change the flow parameters, the parameters of the stages and the turbine, as well as the form of the characteristic. In particular, for decreased n, nonmonotonic variation of the second stage reactivity with increasing π* is observed. It is demonstrated that the turbine characteristic is mainly determined by the influence of the angles of incidence and the velocity at the output of the rows on the losses and the flow output angle. The account of the growing flow output angle due to the positive angle of incidence for decreased rotation frequencies results in a considerable change of the characteristic: poorer performance, redistribution of the pressure drop at the stages, and change of reactivities, growth of the turbine capacity, and change of the angle and flow velocity behind the turbine.



Effect of the air–fuel mixing on the NOх yield in a low-emission gas-turbine plant combustor
摘要
The article deals with construction of a simplified model of inhibition of nitric oxides formed in the combustors of the gas-turbine plants (GTPs) operating on natural gas. A combustor in which premixed, lean air–fuel mixtures are burnt is studied theoretically and experimentally. The research was carried out using a full-scale combustor that had parameters characteristic of modern GTPs. The article presents the results computed by the FlowVision software and the results of the experiments carried out on the test bench of the All-Russia Thermal Engineering Institute. The calculations and the tests were conducted under the following conditions: a flow rate of approximately 4.6 kg/s, a pressure to 450 kPa, an air temperature at the combustor inlet of approximately 400°C, the outlet temperature t3 ≤ 1200°C, and natural gas as the fuel. The comparison of the simulated parameters with the experimental results underlies the constructed correlation dependence of the experimental NOx emission on the calculated parameter of nonuniform fuel concentration at the premixing zone outlet. The postulate about a weak dependence of the emission of NOx formed upon combustion of a perfectly mixed air–fuel mixture—when the methane concentration in air is constant at any point of the air–fuel mixture, i.e., constant in the mixture bulk—on the pressure in the combustor has been experimentally proven. The correctness and the practicability of the stationary mathematical model of the mixing process used to assess the NOx emission by the calculated amount of the air–fuel mixture generated in the premixing zone has been validated. This eliminates some difficulties that arise in the course of calculation of combustion and formation of NOx.



Development of the CCP-200 mathematical model for Syzran CHPP using the Thermolib software package
摘要
Simplified cycle diagram of the CCP-200 power generating unit of Syzran CHPP containing two gas turbines PG6111FA with generators, two steam recovery boilers KUP-110/15-8.0/0.7-540/200, and one steam turbine Siemens SST-600 (one-cylinder with two variable heat extraction units of 60/75 MW in heatextraction and condensing modes, accordingly) with S-GEN5-100 generators was presented. Results of experimental guarantee tests of the CCP-200 steam–gas unit are given. Brief description of the Thermolib application for the MatLab Simulink software package is given. Basic equations used in Thermolib for modeling thermo-technical processes are given. Mathematical models of gas–turbine plant, heat-recovery steam generator, steam turbine and integrated plant for power generating unit CCP-200 of Syzran CHPP were developed with the help of MatLab Simulink and Thermolib. The simulation technique at different ambient temperature values was used in order to get characteristics of the developed mathematical model. Graphic comparison of some characteristics of the CCP-200 simulation model (gas temperature behind gas turbine, gas turbine and combined cycle plant capacity, high and low pressure steam consumption and feed water consumption for high and low pressure economizers) with actual characteristics of the steam–gas unit received at experimental (field) guarantee tests at different ambient temperature are shown. It is shown that the chosen degrees of complexity, characteristics of the CCP-200 simulation model, developed by Thermolib, adequately correspond to the actual characteristics of the steam–gas unit received at experimental (field) guarantee tests; this allows considering the developed mathematical model as adequate and acceptable it for further work.



Domestic atmospheric pressure thermal deaerators
摘要
Based on many years of experience and proven technical solutions, modern atmospheric pressure deaerators of the capacity of 0.4 to 800 t/h were designed and developed. The construction of such deaerators is based on known and explored technical solutions. A two-stage deaeration scheme is applied where the first stage is a jet dripping level (in a column) and the second one is a bubble level (in a tank). In the design of deaeration columns, low-pressure hydraulic nozzles (Δp < 0.15 MPa) and jet trays are used, and in deaerator tank, a developed “flooded” sparger is applied, which allows to significantly increase the intensity of the heat and mass exchange processes in the apparatus. The use of the two efficient stages in a column and a “flooded” sparger in a tank allows to reliably guarantee the necessary water heating and deaeration. Steam or “superheated” water of the temperature of t ≥ 125°C can be used as the coolant in the deaerators. The commissioning tests of the new deaerator prototypes of the capacity of 800 and 500 t/h in the HPP conditions showed their sustainable, reliable, and efficient work in the designed range of hydraulic and thermal loads. The content of solved oxygen and free carbon dioxide in make-up water after deaerators meets the requirements of State Standard GOST 16860-88, the operating rules and regulations, and the customer’s specifications. Based on these results, the proposals were developed on the structure and the design of deaerators of the productivity of more than 800 t/h for the use in circuits of large heating systems and the preparation of feed water to the TPP at heating and industrial-heating plants. The atmospheric pressure thermal deaerators developed at NPO TsKTI with consideration of the current requirements are recommended for the use in water preparation schemes of various power facilities.



Steam Boilers, Power-Plant Fuel, Burner Facilities, and Boiler Accessories
Computational investigations of low-emission burner facilities for char gas burning in a power boiler
摘要
Various variants for the structure of low-emission burner facilities, which are meant for char gas burning in an operating TP-101 boiler of the Estonia power plant, are considered. The planned increase in volumes of shale reprocessing and, correspondingly, a rise in char gas volumes cause the necessity in their cocombustion. In this connection, there was a need to develop a burner facility with a given capacity, which yields effective char gas burning with the fulfillment of reliability and environmental requirements. For this purpose, the burner structure base was based on the staging burning of fuel with the gas recirculation. As a result of the preliminary analysis of possible structure variants, three types of early well-operated burner facilities were chosen: vortex burner with the supply of recirculation gases into the secondary air, vortex burner with the baffle supply of recirculation gases between flows of the primary and secondary air, and burner facility with the vortex pilot burner. Optimum structural characteristics and operation parameters were determined using numerical experiments. These experiments using ANSYS CFX bundled software of computational hydrodynamics were carried out with simulation of mixing, ignition, and burning of char gas. Numerical experiments determined the structural and operation parameters, which gave effective char gas burning and corresponded to required environmental standard on nitrogen oxide emission, for every type of the burner facility. The burner facility for char gas burning with the pilot diffusion burner in the central part was developed and made subject to computation results. Preliminary verification nature tests on the ТP-101 boiler showed that the actual content of nitrogen oxides in burner flames of char gas did not exceed a claimed concentration of 150 ppm (200 mg/m3).



Estimation of capability of changing the boilers TP-14A at Kumertau Termal Power Station to burning B3 grade coal from Verkhne-Sokursky deposit
摘要
Currently, TP-14A boilers should be changed into burning off-design fuel: grade B3 coal of Verkhne-Sokursky deposit. Its share (by heat) in the fuel balance should be not less than 80%. A test burning of Verkhne-Sokursky coal was carried out, which showed that, in its present form, the boilers and dust-systems are not suitable to operate with this fuel, because their characteristics significantly differs from the project one. It is impossible to maintain the overheating temperature at the required level during operation on only coal; it is difficult to maintain the temperature behind the mills at the level of 200°C. The joint burning the coal with natural gas allows to solve these problems at operation of one or two mills. However, substantial fuel underburning, essential thermal maldistributions on the steam flows, and emissions of NOx above permissible values is observed. Based on the results of test burning and joint calculations of furnace, boiler, and dust-systems, ways to solve these problems were developed. For modeling the furnace process, the Fluent and Sigma Flame software were used. Adapted mathematical models of the boiler and dust-preparing systems were created using the Boiler Designer and Stoker software. It is necessary to reconstruct the boiler plants, which can perform in two stages. In the first stage, the existing burners are replaced by the burners with turning nozzles and two-stage burning is arranged, and the inertial separators and recirculation of the drying agent are installed on the mills. In the second stage, the change to concentric burning is carried out, the heating surface of radiation part of the steam superheater increases, and the preset included hammer part is installed at the mill. It is shown that a positive effect should be obtained already after the first stage of reconstruction. The second stage of reconstruction will require additional expenses, but its implementation will allow to a greater extent to eliminate the disadvantageous in the operation of the equipment.



Heat and Mass Transfer and Properties of Working Fluids and Materials
Entrained liquid fraction calculation in adiabatic disperse-annular flows at low rate in film
摘要
In this work, we continue our study [1] and extend further an approach to low reduced pressures. An approximate model of droplets entrainment from the laminar film surface and an equation for calculating entrainment intensity are proposed. To carry out direct verification of this equation using experimental data is extremely difficult because the integral effect—liquid flow rate in a film at a dynamic equilibrium between entrainment and deposition—is usually measured in the experiments. The balance between flows of droplets entrainment and deposition corresponds to the dynamic equilibrium because of turbulent diffusion. The transcendental equation, which was obtained on the basis of this balance, contains one unknown numerical factor and allows one to calculate the liquid rate. Comparing calculation results with the experimental data for the water–air and water–helium flows at low reduced pressures (less than 0.03) has shown their good agreement at the universal value of a numerical constant, if an additional dimensionless parameter, a fourth root of vaporliquid densities ratio, is introduced. The criterion that determines the boundary of using methods of this work and that of [1] in calculations and that reflects effect of pressure and state of film surface on distribution of the liquid in the annular flow is proposed; the numerical value of this criterion has been determined.



Metals and Strength Problems
Investigations of structural transformation within metal (austenite chromium-manganese steel) at the external surface of steam superheating tubes
摘要
The elemental composition of an altered layer at the external surface of a steam superheating tube of grade DI59 steel is investigated after long-term operation. It is shown that the layer is located between a scale and a matrix and depleted by silicon, manganese, copper, and chromium with the maximum oxidizer affinity, enriched by iron and nickel to 90%, and mainly composed of the α-Fe phase (ferrite) with the ferromagnetic properties. The layer formed as a result of selective oxidation and diffusion from the matrix into the metal scale with the less standard free energy of the formation of sulfides and oxides. A magnetic ferrite meter is used in the experimental investigation of the layer evolution by testing grade DI59 steel for heat resistance in air environment at temperatures of 585, 650, and 700°С for 15 × 103 h; creep at a temperature of 750°С and a stress of 60 МPа; and long-term strength at temperatures of 700 and 750°С and stresses of from 30 tо 80 МPа. Specimens for tests are made of tubes under as-received conditions. The relationship between the ferrite phase content in the surface metal layer and the temperature and time of test is determined. The dependence is developed to evaluate the equivalent temperature for operation of the external surface of steam superheating tubes using data of magnetic ferritometry. It is shown that operation temperatures that are determined by the ferrite phase content and the σ phase concentration in the metal structure of steam superheating tubes with the significant operating time are close. It is proposed to use magnetic ferritometry for revelation of thermal nonuniformity and worst tubes of steam superheaters of HPP boilers.



Water Preparation and Water Chemistry Conditions
Modeling of corrosion product migration in the secondary circuit of nuclear power plants with WWER-1200
摘要
Models of corrosion and mass transfer of corrosion products in the pipes of the condensate-feeding and steam paths of the secondary circuit of NPPs with WWER-1200 are presented. The mass transfer and distribution of corrosion products over the currents of the working medium of the secondary circuit were calculated using the physicochemical model of mass transfer of corrosion products in which the secondary circuit is regarded as a cyclic system consisting of a number of interrelated elements. The circuit was divided into calculated regions in which the change in the parameters (flow rate, temperature, and pressure) was traced and the rates of corrosion and corrosion products entrainment, high-temperature рН, and iron concentration were calculated. The models were verified according to the results of chemical analyses at Kalinin NPP and iron corrosion product concentrations in the feed water at different NPPs depending on рН at 25°С (рН25) for service times τ ≥ 5000 h. The calculated рН values at a coolant temperature t (рНt) in the secondary circuit of NPPs with WWER-1200 were presented. The calculation of the distribution of рНt and ethanolamine and ammonia concentrations over the condensate feed (CFC) and steam circuits is given. The models are designed for developing the calculation codes. The project solutions of ATOMPROEKT satisfy the safety and reliability requirements for power plants with WWER-1200. The calculated corrosion and corrosion product mass transfer parameters showed that the model allows the designer to choose between the increase of the correcting reagent concentration, the use of steel with higher chromium contents, and intermittent washing of the steam generator from sediments as the best solution for definite regions of the circuit.


