Conversion of second-class constraints and resolving the zero-curvature conditions in the geometric quantization theory


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In the approach to geometric quantization based on the conversion of second-class constraints, we resolve the corresponding nonlinear zero-curvature conditions for the extended symplectic potential. From the zero-curvature conditions, we deduce new linear equations for the extended symplectic potential. We show that solutions of the new linear equations also satisfy the zero-curvature condition. We present a functional solution of these new linear equations and obtain the corresponding path integral representation. We investigate the general case of a phase superspace where boson and fermion coordinates are present on an equal basis.

Sobre autores

I. Batalin

Lebedev Physical Institute, RAS

Autor responsável pela correspondência
Email: batalin@lpi.ru
Rússia, Moscow

P. Lavrov

Tomsk State Pedagogical University

Email: batalin@lpi.ru
Rússia, Tomsk

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2016