Description of Solutions with the Uniton Number 3 in the Case of One Eigenvalue: Counterexample to the Dimension Conjecture
- 作者: Domrina A.V.1
-
隶属关系:
- Faculty of Computational Mathematics and Cybernetics
- 期: 卷 201, 编号 1 (2019)
- 页面: 1413-1425
- 栏目: Article
- URL: https://bakhtiniada.ru/0040-5779/article/view/172492
- DOI: https://doi.org/10.1134/S0040577919100015
- ID: 172492
如何引用文章
详细
We explicitly describe solutions of the noncommutative unitary U (1) sigma model that represent finitedimensional perturbations of the identity operator and have only one eigenvalue and the minimum uniton number 3. We also show that the solution set M(e, r, u) of energy e and canonical rank r with the minimum uniton number u = 3 has a complex dimension greater than r for e = 4 n - 1 and r = n+1, where n ≥ 3. This disproves the dimension conjecture that holds in the case u ∈ {1, 2}.
作者简介
A. Domrina
Faculty of Computational Mathematics and Cybernetics
编辑信件的主要联系方式.
Email: avdomrina@yandex.ru
俄罗斯联邦, Moscow
补充文件
