Geometry of Higgs bundles over elliptic curves related to automorphisms of simple Lie algebras, Calogero–Moser systems, and KZB equations


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We construct twisted Calogero–Moser systems with spins as Hitchin systems derived from the Higgs bundles over elliptic curves, where the transition operators are defined by arbitrary finite-order automorphisms of the underlying Lie algebras. We thus obtain a spin generalization of the twisted D’Hoker–Phong and Bordner–Corrigan–Sasaki–Takasaki systems. In addition, we construct the corresponding twisted classical dynamical r-matrices and the Knizhnik–Zamolodchikov–Bernard equations related to the automorphisms of Lie algebras.

Sobre autores

A. Levin

Department of Mathematics; Institute for Theoretical and Experimental Physics

Autor responsável pela correspondência
Email: alevin@hse.ru
Rússia, Moscow; Moscow

M. Olshanetsky

Kharkevich Institute for Information Transmission Problems

Email: alevin@hse.ru
Rússia, Moscow

A. Zotov

Department of Mathematics; Steklov Mathematical Institute of Russian Academy of Sciences; Moscow Institute of Physics and Technology

Email: alevin@hse.ru
Rússia, Moscow; Moscow; Dolgoprudny, Moscow Oblast

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2016