Geometry of Higgs bundles over elliptic curves related to automorphisms of simple Lie algebras, Calogero–Moser systems, and KZB equations
- Авторлар: Levin A.M.1,2, Olshanetsky M.A.3, Zotov A.V.1,4,5
-
Мекемелер:
- Department of Mathematics
- Institute for Theoretical and Experimental Physics
- Kharkevich Institute for Information Transmission Problems
- Steklov Mathematical Institute of Russian Academy of Sciences
- Moscow Institute of Physics and Technology
- Шығарылым: Том 188, № 2 (2016)
- Беттер: 1121-1154
- Бөлім: Article
- URL: https://bakhtiniada.ru/0040-5779/article/view/170708
- DOI: https://doi.org/10.1134/S0040577916080018
- ID: 170708
Дәйексөз келтіру
Аннотация
We construct twisted Calogero–Moser systems with spins as Hitchin systems derived from the Higgs bundles over elliptic curves, where the transition operators are defined by arbitrary finite-order automorphisms of the underlying Lie algebras. We thus obtain a spin generalization of the twisted D’Hoker–Phong and Bordner–Corrigan–Sasaki–Takasaki systems. In addition, we construct the corresponding twisted classical dynamical r-matrices and the Knizhnik–Zamolodchikov–Bernard equations related to the automorphisms of Lie algebras.
Авторлар туралы
A. Levin
Department of Mathematics; Institute for Theoretical and Experimental Physics
Хат алмасуға жауапты Автор.
Email: alevin@hse.ru
Ресей, Moscow; Moscow
M. Olshanetsky
Kharkevich Institute for Information Transmission Problems
Email: alevin@hse.ru
Ресей, Moscow
A. Zotov
Department of Mathematics; Steklov Mathematical Institute of Russian Academy of Sciences; Moscow Institute of Physics and Technology
Email: alevin@hse.ru
Ресей, Moscow; Moscow; Dolgoprudny, Moscow Oblast
Қосымша файлдар
