Geometry of Higgs bundles over elliptic curves related to automorphisms of simple Lie algebras, Calogero–Moser systems, and KZB equations


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We construct twisted Calogero–Moser systems with spins as Hitchin systems derived from the Higgs bundles over elliptic curves, where the transition operators are defined by arbitrary finite-order automorphisms of the underlying Lie algebras. We thus obtain a spin generalization of the twisted D’Hoker–Phong and Bordner–Corrigan–Sasaki–Takasaki systems. In addition, we construct the corresponding twisted classical dynamical r-matrices and the Knizhnik–Zamolodchikov–Bernard equations related to the automorphisms of Lie algebras.

Авторлар туралы

A. Levin

Department of Mathematics; Institute for Theoretical and Experimental Physics

Хат алмасуға жауапты Автор.
Email: alevin@hse.ru
Ресей, Moscow; Moscow

M. Olshanetsky

Kharkevich Institute for Information Transmission Problems

Email: alevin@hse.ru
Ресей, Moscow

A. Zotov

Department of Mathematics; Steklov Mathematical Institute of Russian Academy of Sciences; Moscow Institute of Physics and Technology

Email: alevin@hse.ru
Ресей, Moscow; Moscow; Dolgoprudny, Moscow Oblast

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2016