Hurwitz numbers and products of random matrices


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We study multimatrix models, which may be viewed as integrals of products of tau functions depending on the eigenvalues of products of random matrices. We consider tau functions of the two-component Kadomtsev–Petviashvili (KP) hierarchy (semi-infinite relativistic Toda lattice) and of the B-type KP (BKP) hierarchy introduced by Kac and van de Leur. Such integrals are sometimes tau functions themselves. We consider models that generate Hurwitz numbers HE,F, where E is the Euler characteristic of the base surface and F is the number of branch points. We show that in the case where the integrands contain the product of n > 2 matrices, the integral generates Hurwitz numbers with E ≤ 2 and F ≤ n+2. Both the numbers E and F depend both on n and on the order of the factors in the matrix product. The Euler characteristic E can be either an even or an odd number, i.e., it can match both orientable and nonorientable (Klein) base surfaces depending on the presence of the tau function of the BKP hierarchy in the integrand. We study two cases, the products of complex and the products of unitary matrices.

作者简介

A. Orlov

Institute of Oceanology; National Research University Higher School of Economics

编辑信件的主要联系方式.
Email: orlovs@ocean.ru
俄罗斯联邦, Moscow; Moscow

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017