Algebro-Geometric Integration of the Modified Belov—Chaltikian Lattice Hierarchy


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Using the Lenard recurrence relations and the zero-curvature equation, we derive the modified Belov—Chaltikian lattice hierarchy associated with a discrete 3×3 matrix spectral problem. Using the characteristic polynomial of the Lax matrix for the hierarchy, we introduce a tri gonal curve Km−2 of arithmetic genus m−2. We study the asymptotic properties of the Baker—Akhiezer function and the algebraic function carrying the data of the divisor near \(P_{\infty_{1}}\), \(P_{\infty_{2}}\), \(P_{\infty_{3}}\), and P0 on Km−2. Based on the theory of trigonal curves, we obtain the explicit theta-function representations of the algebraic function, the Baker—Akhiezer function, and, in particular, solutions of the entire modified Belov—Chaltikian lattice hierarchy.

Авторлар туралы

Xianguo Geng

School of Mathematics and Statistics

Email: weijiaozzu@sohu.com
ҚХР, Zhengzhou

Jiao Wei

School of Mathematics and Statistics

Хат алмасуға жауапты Автор.
Email: weijiaozzu@sohu.com
ҚХР, Zhengzhou

Xin Zeng

School of Mathematics and Statistics

Email: weijiaozzu@sohu.com
ҚХР, Zhengzhou

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2019