Информативность основных клинико-лабораторных показателей для пациентов с тяжелой формой COVID-19

Обложка

Цитировать

Полный текст

Аннотация

Цель. Провести ретроспективную оценку клинико-лабораторных данных больных тяжелыми формами COVID-19, госпитализированных в отделение реанимации и интенсивной терапии (ОРИТ), с целью оценки вклада различных показателей в вероятность летального исхода.

Материалы и методы. Проведена ретроспективная оценка сведений о 224 пациентах с тяжелым течением COVID-19, госпитализированных в отделение интенсивной терапии. В анализ взяты данные биохимического, клинического анализов крови, коагулограммы, показатели воспалительного ответа. При переводе в ОРИТ фиксировались показатели формализованных шкал SOFA и APACHE. Отдельно выполнена выгрузка антропометрических и демографических данных.

Результаты. В ходе анализа наших данных оказалось, что лишь один демографический признак (возраст) и значительное количество лабораторных показателей могут служить в качестве возможных маркеров неблагоприятного прогноза. Выявлено 12 лабораторных признаков, наилучших с точки зрения прогнозирования: прокальцитонин, лимфоциты (абсолютное значение), натрий (КОС), креатинин, лактат (КОС), D-димер, индекс оксигенации, прямой билирубин, мочевина, гемоглобин, С-реактивный белок, возраст, лактатдегидрогеназа. Комбинация данных признаков позволяет обеспечить качество прогноза на уровне AUC=0,85, в то время как известные шкалы обеспечивают несколько меньшую результативность (APACHE: AUC=0,78, SOFA: AUC=0,74).

Заключение. Оценка прогноза течения COVID-19 у больных, находящихся в ОРИТ, актуальна не только с позиции адекватного распределения лечебных мероприятий, но и с точки зрения понимания патогенетических механизмов развития заболевания.

Об авторах

Оксана Владимировна Станевич

ФГБОУ ВО «Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова» Минздрава России

Email: oksana.stanevich@gmail.com
ORCID iD: 0000-0002-6894-6121

врач-инфекционист отд. эпидемиологии

Россия, Санкт-Петербург

Евгений Александрович Бакин

ФГБОУ ВО «Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова» Минздрава России

Email: eugene.bakin@gmail.com
ORCID iD: 0000-0002-5694-4348

канд. техн. наук, ст. науч. сотр. Клиники «НИИ детской онкологии, гематологии и трансплантологии им. Р.М. Горбачевой»

Россия, Санкт-Петербург

Александра Александровна Коршунова

ФГБОУ ВО «Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова» Минздрава России

Автор, ответственный за переписку.
Email: aftotrof@gmail.com
ORCID iD: 0000-0002-7419-7227

зам. глав. врача клиники по клинико-экспертной работе – врач-терапевт управления клиник

Россия, Санкт-Петербург

Александра Яковлевна Гудкова

ФГБОУ ВО «Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова» Минздрава России

Email: alexagood-1954@mail.ru
ORCID iD: 0000-0003-0156-8821

д-р мед. наук, проф. каф. факультетской терапии, зав. лаб. кардиомиопатий Научно-исследовательского института сердечно-сосудистых заболеваний НКИЦ

Россия, Санкт-Петербург

Алексей Андреевич Афанасьев

ФГБОУ ВО «Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова» Минздрава России

Email: alex-txf@mail.ru
ORCID iD: 0000-0003-0277-3456
SPIN-код: 4389-6271

канд. мед. наук, зав. отд-нием реанимации и интенсивной терапии №1

Россия, Санкт-Петербург

Ирина Владимировна Шлык

ФГБОУ ВО «Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова» Минздрава России

Email: irina_shlyk@mail.ru
ORCID iD: 0000-0003-0977-8081
SPIN-код: 1715-1770

д-р мед. наук, зам. рук. научно-клинического центра анестезиологии и реаниматологии, зам. глав. врача по анестезиологии и реаниматологии

Россия, Санкт-Петербург

Дмитрий Анатольевич Лиознов

ФГБОУ ВО «Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова» Минздрава России

Email: dlioznov@yandex.ru
ORCID iD: 0000-0003-3643-7354

д-р мед. наук, зав. каф. инфекционных болезней и эпидемиологии

Россия, Санкт-Петербург

Юрий Сергеевич Полушин

ФГБОУ ВО «Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова» Минздрава России

Email: polushinyus@1spbgmu.ru
ORCID iD: 0000-0002-6313-5856
SPIN-код: 2006-1194

д-р мед. наук, рук. научно-клинического центра анестезиологии и реаниматологии, проректор по научной работе

Россия, Санкт-Петербург

Александр Николаевич Куликов

ФГБОУ ВО «Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова» Минздрава России

Email: ankulikov2005@yandex.ru
ORCID iD: 0000-0002-4544-2967
SPIN-код: 3851-6072

д-р мед. наук, дир. научно-клинического исследовательского центра

Россия, Санкт-Петербург

Список литературы

  1. Xu J, Yang X, Yang L, et al. Clinical course and predictors of 60-day mortality in 239 critically ill patients with COVID-19: a multicenter retrospective study from Wuhan, China. Crit Care. 2020;24(1):394. doi: 10.1186/s13054-020-03098-9
  2. Izquierdo JL, Ancochea J, Savana COVID-19 Research Group, Soriano JB. Clinical Characteristics and Prognostic Factors for Intensive Care Unit Admission of Patients With COVID-19: Retrospective Study Using Machine Learning and Natural Language Processing. J Med Internet Res. 2020;22(10):e21801. doi: 10.2196/21801
  3. Abate SM, Ahmed Ali S, Mantfardo B, Basu B. Rate of Intensive Care Unit admission and outcomes among patients with coronavirus: A systematic review and Meta-analysis. PLOS One. 2020;15(7):e0235653. doi: 10.1371/journal.pone.0235653
  4. Wendel Garcia PD, Fumeaux T, Guerci P, et al; RISC-19-ICU Investigators. Prognostic factors associated with mortality risk and disease progression in 639 critically ill patients with COVID-19 in Europe: Initial report of the international RISC-19-ICU prospective observational cohort. EClinicalMedicine. 2020;25:100449. doi: 10.1016/j.eclinm.2020.100449
  5. Core Team R. A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing, 2019. Available at: https://www.R-project.org/ Accessed: 22.06.2021.
  6. Mendenhall WM, Sincich T. Statistics for engineering and the sciences, Sixth edition. Boca Raton: CRC Press, Taylor & Francis Group, 2016.
  7. Fay MP, Proschan MA. Wilcoxon-Mann-Whitney or t-test? On assumptions for hypothesis tests and multiple interpretations of decision rules. Stat Surv. 2010;4:1-39. doi: 10.1214/09-SS051
  8. Farrar DE, Glauber RR. Multicollinearity in Regression Analysis: The Problem Revisited. Rev Econ Stat. 1967;49(1):92. doi: 10.2307/1937887
  9. Yul Lee K, Weissfeld LA. A multicollinearity diagnostic for the cox model with time dependent covariates. Commun Stat – Simul Comput. 1996;25(1)41-60. doi: 10.1080/03610919608813297
  10. Maalouf M. Logistic regression in data analysis: an overview. Int J Data Anal Tech Strateg. 2011;3(3):281. doi: 10.1504/IJDATS.2011.041335
  11. Breiman L. Random Forests. Mach Learn. 2001;45(1):5-32. doi: 10.1023/A:1010933404324
  12. Hastie T, Tibshirani R, Friedman JH. The elements of statistical learning: data mining, inference, and prediction, 2nd ed. New York, NY: Springer, 2009.
  13. Stone M. Cross-Validatory Choice and Assessment of Statistical Predictions. J R Stat Soc Ser B Methodol. 1974;36(2):111-33. doi: 10.1111/j.2517-6161.1974.tb00994.x
  14. Kuhn M. Caret: Classification and Regression Training. 2020. Available at: https://CRAN.R-project.org/package=caret. Accessed: 22.06.2021.
  15. Wickham H. Ggplot2: elegant graphics for data analysis, Second edition. Cham: Springer, 2016.
  16. Kassambara A, Kosinski M, Biecek P. Survminer: Drawing Survival Curves using „ggplot2“. 2019. Available at: https://CRAN.R-project.org/package=survminer. Accessed: 22.06.2021.
  17. Raivo Kolde. Pheatmap: Pretty Heatmaps. 2019. Available at: https://CRAN.R-project.org/package=pheatmap. Accessed: 22.06.2021.
  18. Gupta S, Hayek SS, Wang W, et al. Factors Associated With Death in Critically Ill Patients With Coronavirus Disease 2019 in the US. JAMA Intern Med. 2020;180(11):1436. doi: 10.1001/jamainternmed.2020.3596
  19. Guillamet MCV, Guillamet RV, Kramer AA, et al. Toward a COVID-19 score-risk assessments and registry. Int Care Crit Care Med. 2020. doi: 10.1101/2020.04.15.20066860
  20. Wynants L, Van Calster B, Collins GS, et al. Prediction models for diagnosis and prognosis of covid-19: systematic review and critical appraisal. BMJ. 2020:m1328. doi: 10.1136/bmj.m1328
  21. Zhang H, Shi T, Wu X, et al. Risk prediction for poor outcome and death in hospital in-patients with COVID-19: derivation in Wuhan, China and external validation in London, UK. Public and Global Health. 2020. doi: 10.1101/2020.04.28.20082222
  22. Levy TJ, Richardson S, Coppa K, et al. A predictive model to estimate survival of hospitalized COVID-19 patients from admission data. Health Informatics. 2020. doi: 10.1101/2020.04.22.20075416
  23. Han Y, Zhang H, Mu S, et al. Lactate dehydrogenase, an independent risk factor of severe COVID-19 patients: a retrospective and observational study. Aging. 2020;12(12):11245-58. doi: 10.18632/aging.103372
  24. Chen Z, Hu J, Liu L, et al. Clinical Characteristics of Patients with Severe and Critical COVID-19 in Wuhan: A Single-Center, Retrospective Study. Infect Dis Ther. 2021;10(1):421-38. doi: 10.1007/s40121-020-00379-2
  25. Hu C, Liu Z, Jiang Y, et al. Early prediction of mortality risk among patients with severe COVID-19, using machine learning. Int J Epidemiol. 2021;49(6):1918-29. doi: 10.1093/ije/dyaa171
  26. Rod JE, Oviedo-Trespalacios O, Cortes-Ramirez J. A brief-review of the risk factors for covid-19 severity. Rev Saúde Pública. 2020;54:60. doi: 10.11606/s1518-8787.2020054002481
  27. Tan L, Wang Q, Zhang D, et al. Lymphopenia predicts disease severity of COVID-19: a descriptive and predictive study. Signal Transduct Target Ther. 2020;5(1):33. doi: 10.1038/s41392-020-0148-4
  28. Carfora V, Spiniello G, Ricciolino R, et al. Anticoagulant treatment in COVID-19: a narrative review. J Thromb Thrombolysis. 2021;51(3):642-8. doi: 10.1007/s11239-020-02242-0
  29. Pourhomayoun M, Shakibi M. Predicting mortality risk in patients with COVID-19 using machine learning to help medical decision-making. Smart Health. 2021;20:100178. doi: 10.1016/j.smhl.2020.100178
  30. Singh K, Valley TS, Tang S, et al. Evaluating a Widely Implemented Proprietary Deterioration Index Model among Hospitalized COVID-19 Patients. Ann Am Thorac Soc. 2021;18(7):1129-37. doi: 10.1513/AnnalsATS.202006-698OC
  31. Hu H, Yao N, Qiu Y. Comparing Rapid Scoring Systems in Mortality Prediction of Critically Ill Patients With Novel Coronavirus Disease. Acad Emerg Med. 2020;27(6):461-8. doi: 10.1111/acem.13992
  32. Williamson EJ, Walker AJ, Bhaskaran K, et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature. 2020;584(7821):430-6. doi: 10.1038/s41586-020-2521-4

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Схема исследования.

Скачать (120KB)
3. Рис. 2. Графики кумулятивной инцидентности для событий «улучшение» («выписка») и «смерть» в популяции больных, поступивших в ОРИТ (n=211).

Скачать (97KB)
4. Рис. 3. Корреляционная матрица статистически значимо различающихся между группами признаков. Примечание. Ячейки, отвечающие за признаки, коэффициент корреляции которых оказался не значим, забелены.

Скачать (198KB)
5. Рис. 4. Анализ клинико-лабораторных признаков: а – ROC-анализ полного набора признаков (наилучший результат у метода rf); b – ранжированный по информативности список признаков; с – ROC-анализ 12 наиболее информативных признаков – наилучший результат у rf short; d – сравнения со шкалами SOFA и APACHE.

Скачать (424KB)

© ООО "Консилиум Медикум", 2022

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».