Особенности формирования ударных волн в газовой смеси в зависимости от концентрации ее компонентов

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

На основе модельного кинетического уравнения для смеси газов и его системы моментных уравнений рассмотрена задача о профиле плоской ударной волны в смеси одно- и многоатомных газов. Проведены серийные расчеты для ударных волн в смесях Ar–He и H 2 –CO 2 в интервале парциальных концентраций от 0.01 до 0.99. Показано, что наиболее узкие профили плотности, скорости и температуры возникают в смеси с малой концентрацией одного из компонентов. Также показано, что решения кинетического и моментного уравнений достаточно близки, при этом вязкие члены моментных уравнений слабо влияют на форму профиля компонента, если концентрация этого компонента мала. Получены и проанализированы немонотонные профили скорости звука.

Full Text

Restricted Access

About the authors

Ю. А. Никитченко

Московский авиационный институт (национальный исследовательский университет)

Author for correspondence.
Email: nikitchenko7@yandex.ru
Russian Federation, г. Москва

Н. И. Сергеева

Московский авиационный институт (национальный исследовательский университет)

Email: natasg@outlook.com
Russian Federation, г. Москва

References

  1. Струминский В.В. Влияние диффузионной скорости на течение газовой смеси // ПММ. 1974. Т. 38. № 2. С. 203.
  2. Струминский В.В., Шавалиев М.Ш. Явления переноса в многоскоростных и многотемпературных смесях газов // ПММ. 1986. Т. 50. № 1. С. 83.
  3. КиселевС.П., Руев Т.А., Фомин В.М., Шавалиев М.Ш., Трунев А.П. Ударно-волновые процессы в двухкомпонентных и двухфазных средах. Новосибирск: Наука, 1992. 261 с.
  4. Bird G.A. The Structure of Normal Shock Waves in a Binary Gas Mixture // J. Fluid Mech. 1968. V. 31. Pt. 4. P. 657.
  5. Куликов С.В., Берзигияров П.К. Статистическое моделирование поступательной неравновесности газовой смеси во фронте ударной волны на многопроцессорных компьютерах // Выч. мет. Программирование.2002.Т. 3. № 1. С. 144.
  6. Куликов С.В., Соловьева М.Е. Об эффективности статистического моделирования ударной волны в газовой смеси // ЖВМиМФ. 1988. Т. 28. № 12. С. 1867.
  7. Raines A.A. Numerical Solution of One-dimensional Problems in Binary Gas Mixture on the Basis of the Boltzmann Equation // AIP Conf. Proc. 2003. V. 663. № 1. С. 67.
  8. Кузнецов М.М., Матвеев С.В., Молоствин Е.В., Решетникова Ю.Г., Смотрова Л.В. Высокоскоростная поступательная неравновесность смеси газов ваналитической модели ударной волны // Физико-химическая кинетика вгазовой динамике. 2016. Т. 17. № 1. http://chemphys.edu.ru/issuse/2016-17-1/articles/613/
  9. Кузнецов М.М., Кулешова Ю.Д., Смотрова Л.В., Решетникова Ю.Г. Омаксимуме эффекта высокоскоростной поступательной неравновесности вударной волне // Вестник МГОУ. Физика–математика. 2016. № 3. С. 84.
  10. Бочкарев А.А., РебровА.К., ТимошенкоН.И. Структураударнойволныв смеси Ar–He //Изв. СО АН СССР. 1976. Т. 3. Вып. 1. С. 76.
  11. Harnett L.M., Muntz E.P. Experimental Investigation of Normal Shock Wave Velocity Distribution Functions in Mixtures of Argon and Helium // Phys. Fluids. 1972. V. 15. P. 565.
  12. Gmurczyk A.S., Walenta Z.A. Experimental Investigation of Shock-wave Structure in Hydrogen–Xenon Mixture // Arch. Mech. 1981. V. 33. № 4. P. 501.
  13. Center В.E. Measurements of Shock-wave Structure in Helium–Argon Mixtures // Phys. Fluids. 1967. V. 10. № 8. P. 1777.
  14. Поддоскин А.Б., Юшканов А.А., Яламов Ю.И. О кинетических коэффициентах в граничной задаче скольжения многоатомного газа с вращательными степенями свободы // ТВТ. 2001. Т. 39. № 6. С. 977.
  15. Алексеев Б.В., Полев В.В. Расчет структуры ударной волны с помощью уравнений гидродинамики повышенной точности // ТВТ. 1990. Т. 28. № 3. С. 614.
  16. Рудяк В.Я. О выводе кинетического уравнения типа Энскога для плотного газа // ТВТ. 1985. Т. 23. № 2. С. 268.
  17. Руев А.Г., Федоров А.В., Фомин В.М. Особенности структуры ударной волны в смесях газов с сильно различающимися массами молекул // ПМТФ. 2002. Т. 43. № 4. С. 47.
  18. Никитченко Ю.А. Модельное кинетическое уравнение многоатомных газов // ЖВМиМФ. 2017. Т. 57. № 11. С. 1882.
  19. Никитченко Ю.А., Попов С.А., Сергеева Н.И. Система модельных кинетических уравнений для многокомпонентного газа // ТВТ. 2023. Т. 61. № 5. С. 736.
  20. Никитченко Ю.А., Сергеева Н.И. Модельное кинетическое уравнение для смеси одно- и многоатомных газов // Вестник Гос. ун-та просвещения. Сер. Физика–математика. 2024. № 1. С. 56.
  21. Рид Р., Праусниц Дж., Шервуд Е. Свойства газов и жидкостей. Л.: Химия, 1982.591 с.
  22. Жданов, В.М., АлиевскийМ.Я. Процессы переноса и релаксации в молекулярных газах. М.: Наука, 1989. 336 с.
  23. Никитченко Ю.А. Модели неравновесных течений. М.: Изд-во МАИ, 2013. 160 с.
  24. Никитченко Ю.А. О целесообразности учета коэффициента объемной вязкости в задачах газовой динамики // Изв. РАН. МЖГ. 2018. №2. С. 128.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Carbon dioxide density (a) and temperature (b) profiles in the shock wave at M∞ = 2.05: solid line is the solution of the model kinetic equation, dashed line is the solution of the system of moment equations.

Download (25KB)
3. Fig. 2. Hydrogen density (a) and temperature (b) profiles in the H2–CO2 mixture at a hydrogen content of 50%: solid line is the solution of the model kinetic equation, dashed line is the solution of the system of moment equations.

Download (28KB)
4. Fig. 3. Definition of the width of the profile in the shock wave.

Download (11KB)
5. Fig. 4. Width of the velocity (1), density (2) and temperature (3) profiles in the shock wave for hydrogen (a) and carbon dioxide (b) depending on their partial concentrations in the mixture.

Download (34KB)
6. Fig. 5. Sound speed profiles in H2–CO2 mixture and in pure gases: 1 – 50% H2 + 50% CO2, 2 – 90% H2 + 10% CO2, 3 – 10% H2 + 90% CO2, 4 – 99% H2 + 1% CO2, 5 – 1% H2 + 99% CO2, 6 – 100% H2, 7 – 100% CO2.

Download (16KB)
7. Fig. 6. Temperature profiles of pure hydrogen and its mixtures with carbon dioxide: 1 – 50% H2 + 50% CO2, 2 – 90% H2 + 10% CO2, 3 – 10% H2 + 90% CO2, 4 – 99% H2 + 1% CO2, 5 – 1% H2 + 99% CO2, 6 – 100% H2, 7 – 100% CO2.

Download (18KB)
8. Fig. 7. Dependences of the relative apparent mass of molecules in mixtures of hydrogen and carbon dioxide: 1 – 90% H2 + 10% CO2, 2 – 50% H2 + 50% CO2, 3 – 99% H2 + 1% CO2.

Download (17KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».