Электросопротивление жидкого углерода (до 9000 К) и жидкого гадолиния (до 6000 К) при повышенном давлении и высоких температурах

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Выполнены эксперименты по быстрому нагреву импульсом электрического тока пластинок анизотропного графита и фольги гадолиния, зажатых одинаковым образом: между двух толстостенных пластин стекла ТФ-5 (тяжелый флинт). При этом в обоих случаях стеклянные ячейки предварительно сжимались струбциной для создания некоторого исходного давления. Во время прохождения импульса тока (5 мкс) оценивалось давление в образцах; оно увеличивалось за счет теплового расширения при ограничении стеклянными пластинами. Электросопротивление жидкого углерода при малых давлениях (до 1 кбар) растет с ростом температуры, как и у большинства проводников. При ограничении расширения (растущее давление) электросопротивление жидкого углерода становится константой, не зависящей от роста температуры и давления (вплоть до 9000 К). В отличие от углерода электросопротивление жидкого гадолиния при повышенном давлении (порядка 1 кбар) практически не менялось (~260 мкмОм см) и оставалось примерно постоянным, как и при меньших давлениях (~0.3 кбар), при высоких температурах, вплоть до 6000 К.

Об авторах

С. В. Онуфриев

Объединенный институт высоких температур, ОИВТ РАН

Email: s-onufriev@yandex.ru
Россия, Москва

А. И. Савватимский

Объединенный институт высоких температур, ОИВТ РАН; Физический институт им. П.Н. Лебедева (ФИАН)

Автор, ответственный за переписку.
Email: savvatimskiy.alexander@gmail.com
Россия, Москва; Россия, Москва

Список литературы

  1. Bundy F.P. Direct Conversion of Graphite to Diamond in Static Pressure Apparatus // J. Chem. Phys. 1963. V. 38. № 3. P. 631.
  2. Bundy F.P. Melting of Graphite at Very High Pressure // J. Chem. Phys. 1963. V. 38. № 3. P. 618.
  3. Togaya M. New Kinds of Phase Transitions: Transformations in Disordered Substances. Ed. by Brazhkin V.V. Kluwer Acad. Publ., 2002. 255 p.
  4. Togaya M. Electrical Property Changes of Liquid Carbon Under High Pressures // J. Phys.: Conf. Ser. 2010. V. 215. 012081.
  5. Лебедев С.В., Савватимский А.И. Электросопротивление графита в широкой области конденсированного состояния // ТВТ. 1986. Т. 24. № 5. С. 892.
  6. Вервикишко П.С., Шейндлин М.А. Изучение процессов кристаллизации и конденсации углерода при давлениях свыше 200 бар // 5-я Международная конференция “Лазерные, плазменные исследования и технологии”, ЛАПЛАЗ-2019. Сб. научных трудов. Ч. 1. М.: НИЯУ “МИФИ”, 2019. С. 75.
  7. Коробенко В.Н., Савватимский А.И. Удельное электросопротивление жидкого углерода // ТВТ. 1998. Т. 36. № 5. С. 725.
  8. Savvatimskiy A.I., Onufriev S.V. Measurement of the Specific Heat CV and Resistance of Liquid Carbon Close to Isochoric Condition // Carbon. 2018. V. 135. P. 260.
  9. Коробенко В.Н. Экспериментальное исследование свойств жидких металлов и углерода при высоких температурах. Дис. … канд. физ.-мат. наук. М.: ОИВТ РАН, 2001.
  10. Kondratyev A.M., Korobenko V.N., Rakhel A.D. Experimental Study of Liquid Carbon // J. Phys.: Condens. Matter. 2016. V. 28. 265501.
  11. Савватимский А.И., Онуфриев С.В. Исследование физических свойств углерода при высоких температурах (по материалам экспериментальных работ) // УФН. 2020. Т. 190. № 10. С. 1085.
  12. Савватимский А.И. Плавление графита и свойства жидкого углерода. М.: Физматкнига, 2014. 257 с.
  13. Savvatimskiy A.I. Carbon at High Temperatures. Springer Series in Material Science. Springer Cham, 2015. V. 134. 246 p.
  14. Станкус C.В., Басин А.С., Ревенко М.А. Экспериментальное исследование плотности и теплового расширения гадолиния в интервале температур 293–1850 К // ТВТ. 1981. Т. 19. № 2. С. 293.
  15. Алуф А.А., Семянников А.А., Яценко С.П. Электросопротивление гадолиния, диспрозия, гольмия при высоких температурах // ТВТ. 1983. Т. 21. № 4. С. 800.
  16. Акашев Л.А., Попов Н.А., Шевченко В.Г. Оптические свойства гадолиния в конденсированном состоянии // ТВТ. 2019. Т. 57. № 1. С. 55.
  17. Савватимский А.И., Онуфриев С.В., Вальяно Г.Е., Киреева А.Н., Патрикеев Ю.Б. Электрическое сопротивление жидкого гадолиния (с содержанием углерода 29 ат. %) для температур 2000–4250 К // ТВТ. 2020. Т. 58. № 1. С. 148.
  18. Savvatimskiy A., Onufriev S., Kondratyev A. Capabilities of Pulse Current Heating to Study the Properties of Graphite at Elevated Pressures and at High Temperatures (up to 5000 K) // Carbon. 2016. V. 98. P. 534.
  19. Савватимский А.И., Коробенко В.Н. Высокотемпературные свойства металлов атомной энергетики (цирконий, гафний и железо при плавлении и в жидком состоянии). М.: Издат. дом МЭИ, 2012. 216 с.
  20. Савватимский А.И., Онуфриев С.В. Метод и техника исследования высокотемпературных свойств проводящих материалов в интересах ядерной энергетики // Ядерная физика и инжиниринг. 2015. Т. 6. № 11–12. С. 622.
  21. Лебедев С.В., Савватимский А.И. Металлы в процессе быстрого нагревания электрическим током большой плотности // УФН. 1984. Т. 144. № 2. С. 215.
  22. Korobenko V.N., Rakhel A.D. Technique for Measuring Thermophysical Properties of Refractory Metals at Supercritical Temperature // Int. J. Thermophysics. 1999. V. 20. № 4. P. 1257.
  23. Физические величины. Спр. / Под ред. Григорьева И.С., Мейлихова Е.З. М.: Энергоатомиздат, 1991. 1232 с.
  24. Onufriev S.V., Savvatimskiy A.I., Muboyadzhyan S.A. Investigation of Physical Properties of 0.9ZrN + 0.1ZrO2 Ceramics at 2000–4500 K by Current Pulse Heating // Mater. Res. Express. 2019. V. 6. 125554.
  25. Джексон Дж. Классическая электродинамика. Пер. с англ. Г.В. Воскресенского, Л.С. Соловьёва. М.: Мир, 1965.
  26. Фатеева Н.С., Верещагин Л.Ф., Колотыгин В.С. Оптический метод определения температуры плавления графита в зависимости от давления от 40 000 атм // Докл. АН СССР. 1963. Т. 152. № 2. С. 317.
  27. Gokcen N.A., Chang E.T., Poston T.M., Spencer D.I. Determination of Graphite–Liquid–Vapor Triple Point by Laser Heating // High Temperature Sci. 1976. V. 8. P. 81.
  28. Gubar F., Kikoin I. The Temperature Dependence of the Resistance of Liquid Metals at Constant Volume // J. Phys. USSR. 1945. V. 9. № 1. P. 52. Цит. по: Кикоин И.К. Физика и судьба. М.: Наука, 2008. С. 227.
  29. Bradley C.C. The Resistivity and Thermoelectric Power of Liquid Gallium and Mercury at Constant Volume // Phil. Mag. 1963. V. 8. № 93. P. 1535.
  30. Соловьев А.Н. О зависимости электрического сопротивления жидких металлов от удельного объема // ТВТ. 1963. Т. 1. № 1. С. 45.
  31. Банчила С.Н., Филиппов Л.П. Изучение электропроводности жидких металлов // ТВТ. 1973. Т. 11. № 6. С. 1301.
  32. Филиппов Л.П. Методы расчета и прогнозирования свойств веществ. М.: Изд-во МГУ, 1988. 252 с.

Дополнительные файлы


© С.В. Онуфриев, А.И. Савватимский, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».