Calculation of Heat Capacity and Coefficients of Linear Thermal Expansion of Light and Heavy Platinum Triad Metals

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The relations of the model of a two-phase local equilibrium region are used to calculate the temperature dependences of the heat capacities and coefficients of thermal linear expansion of the palladium triad (Ru, Rh, Pd) and platinum triad (Os, Ir, Pt) in the presence (absence) of an aggregate transition in the studied temperature range. In contrast to the approximation functions used in the scientific literature in individual temperature intervals (using, in particular, the Einstein function), the proposed formulas are simple, universal, and adequately describe the experimental data in the temperature range from 0 K to high temperatures. They can be used to create computer programs for calculating the specified characteristics of various solids, for example, when developing technologies for the rational use of noble metals.

Sobre autores

S. Terekhov

Galkin Donetsk Institute of Physics and Technology

Autor responsável pela correspondência
Email: svlter@yandex.ru
Donetsk, Russia

Bibliografia

  1. Благородные металлы. Спр. изд. / Под ред. Савицкого Е.М. М.: Металлургия, 1984. 592 с.
  2. Онуфриев С.В. Термодинамические свойства рутения и осмия // ТВТ. 2021. Т. 59. № 5. С. 668.
  3. Новицкий Л.А., Кожевников И.Г. Теплофизические свойства материалов при низких температурах. Спр. М.: Машиностроение, 1975. 216 с.
  4. Зиновьев В.Е. Теплофизические свойства металлов при высоких температурах. М.: Металлургия, 1989. 384 с.
  5. Дорогокупец П.И., Соколова Т.С., Данилов Б.С., Литасов К.Д. Почти абсолютные уравнения состояния алмаза, Ag, Al, Au, Cu, Mo, Nb, Pt, Ta, W для квазигидростатических условий // Геодинамика и тектонофизика. 2012. Т. 3. № 2. С. 129.
  6. Новикова С.И. Тепловое расширение твердых тел. М.: Наука, 1974. 292 с.
  7. Казанцев Е.И. Промышленные печи. Спр. рук-во для расчетов и проектирования. М.: Металлургия, 1975. 368 с.
  8. Терехов С.В. Теплоемкость и тепловое расширение вещества. Спр. Донецк: ДонФТИ им. А.А. Галкина, 2022. 168 с.
  9. Arblaster J.W. Selected Values of the Crystallographic Properties of Elements. Ohio: ASM Int., 2018. 684 p.
  10. Кулямина Е.Ю., Зицерман В.Ю., Фокин Л.Р. Осмий – кривая плавления и согласование высокотемпературных данных // ТВТ. 2015. Т. 53. № 1. С. 141.
  11. Фокин Л.Р., Кулямина Е.Ю., Зицерман В.Ю. Новая оценка теплоты плавления осмия // ТВТ. 2019. Т. 57. № 1. С. 61.
  12. Кулямина Е.Ю., Зицерман В.Ю., Фокин Л.Р. Кривые плавления для металлов платиновой группы ‒ согласование данных для иридия // Мониторинг. Наука и технологии. 2015. № 1(22). С. 76.
  13. Кулямина Е.Ю., Зицерман В.Ю., Фокин Л.Р. Расчет кривых плавления методом согласования термодинамических данных. Тугоплавкие металлы платиновой группы (Ru, Os, Ir) // ЖТФ. 2017. Т. 87. № 1. С. 59.
  14. Линева В.И., Синева М.А., Морозов И.В., Белов Г.В. Термодинамические свойства ванадия в конденсированном состоянии // ТВТ. 2020. Т. 58. № 1. С. 41.
  15. Станкус С.В., Тягельский П.В. Термические свойства палладия в интервале температур 293–2250 К // ТВТ. 1992. Т. 30. № 1. С. 188.
  16. Станкус С.В., Хайрулин Р.А. Измерение термических свойств платины в интервале температур 293–2300 К методом проникающего излучения // ТВТ. 1992. Т. 30. № 3. С. 487.
  17. Бубнова Р.С., Филатов С.К. Терморентгенография поликристаллов. Ч. II. Определение количественных характеристик тензора термического расширения. СПб.: СПбГУ, 2013. 143 с.
  18. Ходаковский И.Л. О новых полуэмпирических уравнениях температурной зависимости теплоемкости и объемного коэффициента термического расширения минералов // Вестник ОНЗ РАН. 2012. Т. 4. NZ9001.
  19. Saunders N., Miodownik A.P. CALPHAD (Calculation of Phase Diagrams): a Comprehensive Guide. V. 1. Pergamon. Elsevier Sci. Ltd, 1998. 479 p.
  20. Dinsdale A.T. SGTE Data for Pure Elements // Calphad. 1991. V. 15. № 4. P. 317.
  21. Li Z., Mao H., Selleby M. Thermodynamic Modeling of Pure Co Accounting Two Magnetic States for the Fcc Phase // J. Phase Equilib. Diffus. 2018. № 39. P. 502.
  22. Терехов С.В. Термодинамическая модель размытого фазового перехода в металлическом стекле Fe40Ni40P14B6 // Физика и техника высоких давлений. 2018. Т. 28. № 1. С. 54.
  23. Terekhov S.V. Single- and Multistage Crystallization of Amorphous Alloys // Phys. Met. Metallogr. 2020. V. 121. № 7. P. 664.
  24. Терехов С.В. Тепловые свойства вещества в рамках модели двухфазной системы // ФТТ. 2022. Т. 64. № 8. С. 1077.
  25. Кингери У.Д. Введение в керамику. М.: Стройиздат, 1967. С. 325.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (183KB)
3.

Baixar (204KB)
4.

Baixar (186KB)

Declaração de direitos autorais © С.В. Терехов, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».