Теория гетерогенной реакции твердое–жидкость с появлением газовой фазы

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Представлена аналитическая модель гетерогенной реакции твердое–жидкость с возникновением газообразной фазы базирующаяся на анализе основных параметров, оказывающих наиболее существенное воздействие на интенсивность происходящей реакции. Показано наличие газожидкостных диссипативных структур в виде чередующихся потоков реагирующих фаз, совершающих релаксационные пульсации. Приведено описание процессов формирования пузырьков, их отрыва, движения, имеющих удовлетворительную адекватность. Описана динамика и условия формирования пузырька газа на твердой поверхности реагирования. Получены соотношения для оценки коэффициентов массообмена, коррелирующие с экспериментальными данными. Разработанная аналитическая модель гетерогенной реакции позволит лучше понимать сущность протекания процессов плавления в рудотермических печах, что даст возможность вносить изменения в технологический процесс данных установок, опирающиеся на качественно новые параметры характерных для них реакций. Анализ гидродинамики с формированием газовой фазы аналитическими и численными методами позволил получить соображение о форме протекания жидкой фазы. Типичным является присутствие гидродинамических структур, определяющих упорядоченное движение жидкой фазы при разнообразных методах подачи газовой фазы. Определены значения критических параметров массопереноса. В отличие от процесса кипения наличие кризисного режима при гетерогенной реакции невыполнимо из-за экранирования поверхности реакции.

Об авторах

В. П. Мешалкин

Российский химико-технологический университет имени Д.И. Менделеева,
Институт физической химии и электрохимии им. А.Н. Фрумкина РАН

Email: vovabobkoff@mail.ru
Россия, Москва

В. А. Орехов

Национальный исследовательский университет “МЭИ”

Email: vovabobkoff@mail.ru
Россия, г. Смоленске

А. А. Быков

Национальный исследовательский университет “МЭИ”

Email: vovabobkoff@mail.ru
Россия, г. Смоленске

В. И. Бобков

Национальный исследовательский университет “МЭИ”

Email: vovabobkoff@mail.ru
Россия, г. Смоленске

А. И. Шинкевич

Казанский национальный исследовательский технологический университет

Автор, ответственный за переписку.
Email: vovabobkoff@mail.ru
Россия, Казань

Список литературы

  1. Panchenko S.V., Shirokikh T.V. Thermal hydraulics of moving dispersive layer of process units // Theor. Found. Chem. Eng. 2016. V. 50. № 2. P. 217. [Панченко С.В., Широких Т.В. Теплогидравлика движущегося дисперсного слоя технологических агрегатов // Теор. осн. хим. технол. 2016. Т. 50. № 2. С. 223.].
  2. Meshalkin V.P., Bobkov V.I., Dli M.I., Orekhov V.A., Garabadzhiu A.V. Heat Conductivity of a Composite Phosphate Ore Material with Reacting Carbonate Inclusions // Theoretical Foundations of Chemical Engineering. 2022. V. 56. № 6. P. 971–977.
  3. Meshalkin V., Bobkov V., Dli M., Dovì V. Optimization of energy and resource efficiency in a multistage drying process of phosphate pellets // Energies. 2019. T. 12. № 17. C. 3376.
  4. Meshalkin V.P., Kulov N.N., Panchenko S.V., Dli M.I., Bobkov V.I., Chernovalova M.V. Hydrodynamic aspects of heterogeneous reduction and dissolution reactions with the evolution of gas bubbles // Theoretical Foundations of Chemical Engineering. 2021. Т. 55. № 4. P. 594. [Мешалкин В.П., Кулов Н.Н., Панченко С.В., Дли М.И., Бобков В.И., Черновалова М.В. Гидродинамические аспекты гетерогенных реакций восстановления и растворения с выделением пузырьков газа // Теорет. основы хим. технологии. 2021. Т. 55. № 4. С. 428].
  5. Кутателадзе С.С., Накоряков В.Е. Тепломассообмен и волны в газожидкостных системах. Новосибирск: Наука, 1984.
  6. Keil F.J. Process intensification // Reviews in Chemical Engineering. 2018. V. 34. № 2. P. 135.
  7. Zhenga Z., Chena Y., Zhana X., Gaoa M., Wang Z. Mass transfer intensification in a novel airlift reactor assembly with helical sieve plates // The Chemical Engineering Journal. 2018. V. 342. P. 61.
  8. Zhang X., Guo K., Qi W., Zhang T., Liu C. Gas Holdup, Bubble Behaviour, and Mass Transfer Characteristics in a Two-Stage Internal Loop Airlift Reactor with Different Screens// The Canadian journal of chemical engineering. 2017. V. 95. P. 1202.
  9. Utikar R.P., Ranade V.V. Intensifying Multiphase Reactions and Reactors: Strategies and Examples // ACS Sustainable Chem. Eng.2017. V. 5. № 5. P. 3607.
  10. Räsänen M., Eerikäinen T., Ojamo H. Characterization and hydrodynamics of a novel helix airlift reactor // Chemical Engineering and Processing: Process Intensification. 2016. V. 108. P. 44.
  11. Wang, S., Guo, Y., Zheng, F., Chen, F., Yang, L. Improvement of roasting and metallurgical properties of fluorine-bearing iron concentrate pellets // Powder Technology. 2020. 376. P. 126–135.
  12. Елизаров Д.В., Шавалеев Р.Р., Елизаров В.И. Математическое моделирование и управление процессом массопереноса в аппаратах с непрерывным контактом фаз // Теорет. основы хим. технологии. 2018. Т. 52. № 3. С. 260.
  13. Лаптев А.Г., Карпеев С.В., Лаптева Е.А. Моделирование и модернизация тарельчатых колонн при проведении реакционно-массообменных процессов // Теорет. основы хим. технологии. 2018. Т. 52. № 1. С. 3.
  14. Пучков А.Ю., Лобанева Е.И., Култыгин О.П. Алгоритм прогнозирования параметров системы переработки отходов апатит-нефелиновых руд // Прикладная информатика. 2022. Т. 17. № 1(97). С. 55–68.
  15. Цирлин А.М., Гагарина Л.Г., Балунов А.И. Синтез теплообменных систем, интегрированных с технологическим процессом // Теоретические основы химической технологии. 2021. Т. 55. № 3. С. 347–358.
  16. Ming Yan, Xinnan Song, Jin Tian, Xuebin Lv, Ze Zhang, Xiaoyan Yu, Shuting Zhang. Construction of a new type of coal moisture control device based on the characteristic of indirect drying process of coking coal // Energies. 2020. 13(16), 4162.
  17. Деревянко М.С., Кондратьев А.В. Исследование фазовых превращений и термодинамических свойств оксидных систем // Известия высших учебных заведений. Черная металлургия. 2022. Т. 65. № 3. С. 188–189.
  18. Лабунцов Д.А. Физические основы энергетики. Избранные труды по теплообмену, гидродинамике, термодинамике. М.: Изд-во МЭИ, 2000.
  19. Теория тепломассообмена / Под ред. А.И. Леонтьева. М.: МГТУ, 2018.
  20. Аксельруд Г.А., Гумницкий Я.М., Маллиc С. Исследование химического кипения в области пузырькового режима // Инженерно-физический журн. 1987. Т.53. № 2. С. 205.
  21. Nayak D., Ray N., Dash N., (…), Pati S., De P.S. Induration aspects of low-grade ilmenite pellets: Optimization of oxidation parameters and characterization for direct reduction application // Powder Technology. 2021. 380. P. 408–420.
  22. Пучков А.Ю., Соколов А.М., Федотов В.В. Нейросетевой метод анализа процессов термической обработки окомкованного фосфатного рудного сырья // Прикладная информатика. 2022. Т. 17. № 5. С. 62–76.
  23. Пучков А.Ю., Дли М.И., Прокимнов Н.Н., Шутова Д.Ю. Многоуровневые алгоритмы оценки и принятия решений по оптимальному управлению комплексной системой переработки мелкодисперсного рудного сырья // Прикладная информатика. 2022. Т. 17. № 6. С. 102–121.
  24. Belyakov N.V., Nikolina N.V. Plant protection technologies: From advanced to innovative // J. Physics: Conference Series. 2021. 1942(1), 012072.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2.

Скачать (27KB)
3.

Скачать (21KB)
4.

Скачать (21KB)

© В.П. Мешалкин, В.А. Орехов, А.А. Быков, В.И. Бобков, А.И. Шинкевич, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».