Ethene Protonation Over Silica-Grafted Metal (Cr, Mo, and W) Oxide Catalysts: A Comparative Nanocluster Modeling Study


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Fundamental insights into the ethene protonation reaction was obtained over different cluster models of acidic CrOx/SiO2, MoOx/SiO2, and WOx/SiO2 catalysts at the M06/Def2-TZVP level of theory. The clusters varied from MSiO4H3 structures (all-fixed, H-optimized, and all-relaxed) to MSi4O4H9 (saturated with H atoms) and further to MSi4O13H9 (saturated with OH atoms). The formation of the ethene protonation adducts followed the order of WOx/SiO2 < MoOx/SiO2 < CrOx/SiO2 in terms of the thermodynamic favorability which agreed well with the partial charges and the global softness data. The natural bond orbital analysis revealed a partial flow of electrons from the bridging O atom to the hydrocarbon fragment than to the metal during the initiation. Although the interbond angles were comparably different in the largest cluster, the bond lengths and orbital energy levels did not change significantly from a cluster to another. Concerning the thermochemical properties, any of the cluster models would be utilized within a 2 kcal/mol confidence limit.

作者简介

M. Ghashghaee

Faculty of Petrochemicals

Email: m.ghambarian@ippi.ac.ir
伊朗伊斯兰共和国, Tehran

M. Ghambarian

Gas Conversion Department, Faculty of Petrochemicals

编辑信件的主要联系方式.
Email: m.ghambarian@ippi.ac.ir
伊朗伊斯兰共和国, Tehran

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018