Structure and magnetic properties of ZnxFe3–xO4 nanoparticles obtained by mechanochemical synthesis

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

A scalable method for the synthesis of zinc ferrites ZnxFe3–xO4 (with a doping degree of x = 0; 0.125; 0.25; 0.5; 1) by controlled oxidation of an iron and zinc mixture during mechanochemical synthesis is proposed. Comprehensive studies of the processes occurring during mechanochemical synthesis were carried out using X-ray diffraction analysis, Mössbauer spectroscopy and measurement of magnetic properties. It was shown that zinc ions in the synthesized ferrites occupy both tetrahedral and octahedral positions, which leads to a decrease in the saturation magnetization to 44 Am2/kg with an increase in the doping degree to x = 1. An increase in the doping degree leads to a monotonic decrease in the coercivity to 40.3 Oe, which can be used to obtain materials with desired properties.

Авторлар туралы

V. Mikheev

National University of Science and Technology MISIS

Moscow, Russian Federation

P. Nikolenko

National University of Science and Technology MISIS

Moscow, Russian Federation

T. Nizamov

National University of Science and Technology MISIS

Moscow, Russian Federation

A. Novikov

National University of Science and Technology MISIS

Moscow, Russian Federation

A. Lileev

National University of Science and Technology MISIS

Moscow, Russian Federation

I. Shchetinin

National University of Science and Technology MISIS

Email: ingvar@misis.ru
Moscow, Russian Federation

Әдебиет тізімі

  1. Petrov K.D., Chubarov A.S. // Encyclopedia. 2022. V. 2. № 4. P. 1811. doi.org/10.3390/encyclopedia2040125
  2. Yang H., Wang H., Wen C. et al. // J. Nanobiotechnology. 2022. V. 20. Article No. 98. doi.org/10.1186/s12951-022-01291-2
  3. Turina C., Berensmeier S., Schwaminger S.P.// Pharmaceutical. 2021. V. 14. № 5. P. 405. doi.org/10.3390/ph14050405
  4. Efremova M.V., Naumenko V.A., Spasova M. et al. // Sci. Rep. 2018. V. 8. № 1. P. 11295. doi.org/10.1038/s41598-018-29618-w
  5. Liu X., Zhang Y., Wang Y. et al. // Theranostics. 2020. V. 10. № 8. P. 3793. doi.org/10.7150%2Fthno.40805
  6. Suriyanto, Ng E.Y.K, Kumar S.D. // BioMedical Engineering OnLine. 2017. V. 16. Article No.36. doi.org/10.1186/s12938-017-0327-x
  7. Kumar C.S.S.R., Mohammad F. //Advanced Drug Delivery Review. 2011. V. 63. № 9. P. 789. doi.org/10.1016/j.addr.2011.03.008
  8. Abenojar E.C., Wickramasinghe S., Bas-Concepcion J., Samia A.C.S. // Prog. Nat. Sci. Mater. Int. 2016. V. 26. № 5. P. 440
  9. Hergt R., Dutz S. // J. Magn. Magn. Mater. 2007. V. 311. № 1. P. 187. doi.org/10.1016/j.jmmm.2006.10.1156
  10. Dutz S., Hergt R. // Int. J. Hyperthermia. 2013. V. 29. № 8. P. 790. doi.org/10.3109/02656736.2013.822993
  11. Ma M., Wu Y., Zhou J. et al.//J. Magn. Magn. Mater. 2004. V. 268. P. 33.
  12. Iida H., Takayanagi K., Nakanishi, T., Osaka T. // J. Colloid Interface Sci. 2007. V. 314. P. 274.
  13. Salazar J.S., Perez L., de Abril O. et al. //Chem. Mater. 2011. V. 23. № 6. P. 1379. doi/10.1021/cm103188a
  14. Upadhyay S., Parekh K., Pandey B.// J. Alloys Compounds. 2016. V. 678. P. 478.
  15. Yavuz C.T., Mayo J.T., Yu W.W. et al. //Science. 2006. V.314. № 5801. P. 964. doi/10.1126/science.1131475
  16. Jun Y.W., Huh Y.M., Choi J S. et al. // J. Amer. Chem. Soc. 2005. V. 127. № 16. P. 5732.
  17. Huber D.L. // Small. 2005. V. 1. № 5. P. 482.
  18. Ozel F., Kockar H. // J. Magn. Magn. Mater. 2015. V. 373. P. 213.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).