Bias-controlled dipole spin-wave coupling in lateral magnetic microstructures

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The interaction of spin waves propagating as directional modes in microwaves based on iron-yttrium garnet films has been examined. The configuration consists of three microwaves arranged in parallel, with air gaps separating them, allowing for the coupling between them. The source of this coupling is attributed to the long-range dynamic sagging (dipole) field of the precessing magnetization vector. A methodology is put forward to regulate the properties of this coupling by modulating the angle of the static magnetization with respect to the principal axes of the geometry. Micromagnetic modeling was employed to demonstrate the sub-magnetization angle-controlled propagation of spin waves along lateral microwaves. As a consequence of micromagnetic modeling, spin wave propagation spectra were obtained. The subsequent analysis of these spectra revealed that lateral microwaves can function as functional elements in planar magnonic networks, serving as directional taps, spin wave multiplexers, or microwave power dividers. Furthermore, the study demonstrated the capability to control spin wave routing between the microwaves («magnetic channels») through the modulation of the external magnetic field angle.

About the authors

A. Grachev

Saratov National Research State University named after N.G. Chernyshevsky

Email: andrew.a.grachev@gmail.com
Astrakhanskaya Str., 83, Saratov, 410012 Russian Federation

A. Sadovnikov

Saratov National Research State University named after N.G. Chernyshevsky

Author for correspondence.
Email: andrew.a.grachev@gmail.com
Astrakhanskaya Str., 83, Saratov, 410012 Russian Federation

References

  1. Wang Q., Pirro P., Verba R. et al. // Science Advances. 2018. V. 4. № 1. Article No. 1701517.
  2. Ustinov A.B., Lähderanta E., Inoue M. et al. // IEEE Magn. Lett. 2019. V. 10. Article No. 5508294.
  3. Barman A., Gubbiotti G., Ladak S. et al. // J. Phys.: Cond. Matt. 2021. V. 33. № 41. P. 413001.
  4. Sadovnikov A.V., Beginin E.N., Sheshukova S.E. et al. // Phys. Rev. B. 2019. V. 99. № 5. P. 054424.
  5. Sadovnikov A.V., Grachev A.A., Serdobintsev A.A. et al. // IEEE Magn. Lett. 2019. V. 10. Atricle No. 5506405.
  6. Kalyabin D.V., Sadovnikov A.V., Beginin E.N., Nikitov S.A. // J. Appl. Phys. 2019. V. 126. № . 17. P. 173907.
  7. Никитов С.А., Сафин А.Р., Калябин Д.В. и др. // Успехи физ. наук. 2020. Т. 190 № 10. С. 1009.
  8. Tacchi S., Gruszecki P., Madami M. et al. // Scientific Reports. 2015. V. 5. № 1. Article No. 10367.
  9. Flebus B., Grundler D., Rana B. et al. // J. Phys.: Cond. Matt. 2024. V. 36. № 36. P. 363501.
  10. Evelt M., Demidov V.E., Bessonov V. et al. // Appl. Phys. Lett. 2016. V. 108. № 17. P. 172406.
  11. Vogel M., Chumak A.V., Waller E.H. et al. // Nature Physics. 2015. V. 11. № 6. P. 487.
  12. Садовников А.В., Грачев А.А., Одинцов С.А. и др. // Письма в ЖЭТФ. 2018. Т. 108. № 5. С. 332.
  13. Demokritov S.O. Topology in Magnetism/Eds.by J. Zang, V. Cros, A. Hoffmann. Cham: Springer, 2018. P. 299.
  14. Khivintsev Y.V., Sakharov V.K., Kozhevnikov A.V. et al. // J. Magn. Magn. Mater. 2022. V. 545. Article No.168754.
  15. Borys P., Kolokoltsev O., Iván Gómez-Arista I. et al. // J. Magn. Magn. Material. 2020. V. 498. Article No. 166154.
  16. Vogel M., Abmann R., Pirro P. et al. // Scientific Reports. 2018. V. 8. № 1. Article No. 11099.
  17. Whitehead N.J., Horsley S.A.R., Philbin T.G., Kruglyak V.V. // Appl. Phys. Lett.2018. V. 113. № 21. P. 212404.
  18. Dzyapko O., Borisenko I.V., Demidov V.E. et al. // Appl. Phys. Lett. 2016. V. 109. № 23. P. 232407.
  19. O’Keeffe T.W., Patterson R.W. // J. Appl. Phys. 1978. V. 49. № 9. P. 4886.
  20. Kostylev M.P., Serga A.A., Schneider T. et al. // Phys.l Revi. B. 2007. V. 76. № 18. P. 184419.
  21. Stancil D.D., Prabhakar A. Spin Waves. Berlin: Springer, 2009.
  22. Damon R.W., Eshbach J.R. // J. Phys. Chem. Solids. 1961. V. 19. № 3–4. P. 308.
  23. Sadovnikov A.V., Beginin E.N., Sheshukova S.E. et al. // Appl. Phys. Lett. 2015. V. 107. № 20. P. 202405.
  24. Vansteenkiste A., Leliaert J., Dvornik M. et al. // AIP Advances. 2014. V. 4. № 10. P. 107133.
  25. Гуревич А.Г., Мелков Г.А. Магнитные колебания и волны. М.: Физматгиз, 1994.
  26. Kostylev M.P., Stashkevich A.A., Sergeeva N.A. // Phys. Rev. B. 2004. V. 69. № 6. P. 064408.
  27. Buttner O., Bauer M., Mathieu C. et al. // IEEE Trans. 1998. V.MAG-34. № 4. P. 1381.
  28. Aharoni A. // J. Appl. Phys. 1998. V. 83. № 6. P. 3432
  29. Schabes M., Aharoni A. // IEEE Trans.1987. V. MAG-23. № 6. P. 3882.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».