Применение термообработки для оптимизации магнитострикционной компоненты магнитоэлектрического композита

Обложка

Цитировать

Полный текст

Аннотация

Исследовано влияние термообработки магнитострикционной компоненты в магнитоэлектрических (МЭ) композитах, состоящих из пьезоэлектрического и магнитострикционного материала. Экспериментально найдена зависимость МЭ коэффициента по напряжению от частоты без термообработки и с отжигом от 200 до 500 °C аморфного сплава АМАГ493, который выступал в роли магнитострикционной компоненты. Показано, что с увеличением температуры обработки аморфного сплава наблюдается увеличение МЭ-коэффициента по напряжению: максимальное значение МЭ коэффициента наблюдалось при температуре 350°C и составило 29.52 В см–1 Э–1 на частоте резонанса 54 кГц. Доказано, что увеличение МЭ-коэффициента по напряжению происходит за счет улучшения характеристик аморфного сплава в ходе термической обработки, приводящей к частичной нанокристаллизации материала.

Об авторах

Е. Е. Ивашева

Новгородский государственный университет им. Ярослава Мудрого

Email: ellen9879@yandex.ru
Российская Федерация, 173001, Великий Новгород, ул. Большая Санкт-Петербургская, 41

В. С. Леонтьев

Новгородский государственный университет им. Ярослава Мудрого

Email: ellen9879@yandex.ru
Российская Федерация, 173001, Великий Новгород, ул. Большая Санкт-Петербургская, 41

М. И. Бичурин

Новгородский государственный университет им. Ярослава Мудрого

Email: ellen9879@yandex.ru
Российская Федерация, 173001, Великий Новгород, ул. Большая Санкт-Петербургская, 41

В. В. Коледов

Институт радиотехники и электроники им. В.А. Котельникова РАН

Автор, ответственный за переписку.
Email: ellen9879@yandex.ru
Российская Федерация, 125009, Москва, ул. Моховая, 11, стр. 7

Список литературы

  1. Bichurin M.I., Petrov V.M., Petrov R.V., Tatarenko A.S. Magnetoelectric Composites. Singapore: Pan Stanford Publishing Pte. Ltd., 2019.
  2. Nan C.-W., Bichurin M.I., Dong S. et al. // J. Appl. Phys. 2008. V. 103. № 3. P. 031101. https://doi.org/10.1063/1.2836410
  3. Wang Y., Gray D., Berry D. et al. // Adv. Mater. 2011. V. 23. № 35. P. 4111. https://doi.org/10.1002/adma.201100773
  4. Bichurin M., Petrov R., Sokolov O. et al. // Sensors. 2021. V. 21. № 18. P. 6232. https://doi.org/10.3390/s21186232
  5. Wang Y., Li J., Viehland D. // Mater. Today. 2014. V. 17. № 6. P. 269. https://doi.org/10.1016/j.mattod.2014.05.004
  6. Dong S., Liu J.-M., Cheong S.W., Ren Z. // Adv. Phys. 2015. V. 64. № 5–6. P. 519. https://doi.org/10.1080/00018732.2015.1114338
  7. Palneedi H., Annapureddy V., Priya S., Ryu J. // Actuators. 2016. V. 5. № 1. Article No. 5010009. https://doi.org/10.33990/act5010009
  8. Chu Z., Pourhosseiniasl M., Dong S. // J. Phys. D Appl. Phys. 2018. V. 51. № 24. P. 243001. https://doi.org/10.1088/1361-6463/aac29b
  9. Leung C.M., Li J., Viehland D., Zhuang X. // J. Phys. D Appl. Phys. 2018. V. 51. № 26. P. 263002. https://doi.org/10.1088/1361-6463/aac60b
  10. Deng T., Chen Z., Di W. et al. // Smart Mater. Struct. 2021. V. 30. № 8. P. 085005. https://doi.org/10.1088/1361-665X/ac0858
  11. Katakam S., Hwang J.Y., Vora H. et al. // Scripta Mater. 2012. V. 66. № 8. P. 538. https://doi.org/10.1016/j.scriptamat.2011.12.028
  12. Jiang W.H., Atzmon M. // Scripta Mater. 2006. V. 54. № 4. P. 333. https://doi.org/10.1016/j.scriptamat.2005.09.052
  13. Datta A., Nathasingh D., Martis R.J. et al. // J. Appl. Phys. 1984. V. 55. № 6. P. 1784.https://doi.org/10.1063/1.333477

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2.

Скачать (36KB)
3.

Скачать (113KB)

© Е.Е. Ивашева, В.С. Леонтьев, М.И. Бичурин, В.В. Коледов, 2023

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).