On the symmetry group of the Mollard code
- Authors: Mogilnykh I.Y.1, Solov’eva F.I.1
-
Affiliations:
- Sobolev Institute of Mathematics
- Issue: Vol 52, No 3 (2016)
- Pages: 265-275
- Section: Coding Theory
- URL: https://bakhtiniada.ru/0032-9460/article/view/166307
- DOI: https://doi.org/10.1134/S0032946016030042
- ID: 166307
Cite item
Abstract
We study the symmetry group of a binary perfect Mollard code M(C,D) of length tm + t + m containing as its subcodes the codes C1 and D2 formed from perfect codes C and D of lengths t and m, respectively, by adding an appropriate number of zeros. For the Mollard codes, we generalize the result obtained in [1] for the symmetry group of Vasil’ev codes; namely, we describe the stabilizer
About the authors
I. Yu. Mogilnykh
Sobolev Institute of Mathematics
Author for correspondence.
Email: ivmog@math.nsc.ru
Russian Federation, Novosibirsk
F. I. Solov’eva
Sobolev Institute of Mathematics
Email: ivmog@math.nsc.ru
Russian Federation, Novosibirsk
Supplementary files
