Loading analysis of thick-walled shells in Ilyushin stress space during autofrettage

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The study is devoted to the problem of applying the method of variable elasticity parameters, which uses the provisions of the deformation theory of plasticity, to solving problems of autofreting cylindrical shells loaded with internal pressure. The paper considers two cases of autofreting thick-walled cylindrical shells: with longitudinal stretching and without longitudinal stretching. When determining the stress-strain state, the shell material was considered incompressible and dependencies in the form of a power function and linear power functions were used to describe the deformation diagram of the material. The analysis of the loading process was carried out by studying the loading trajectories of various points of the shell wall in the Ilyushin stress space and the Nadai–Lode parameter for stresses. As studies have shown, in the case of autofreting with longitudinal tension, as well as when loading the shell with internal pressure up to destruction, loading is simple for all functions describing the deformation diagram, which proves the validity of solving such problems by the method of variable elasticity parameters. When autofreting the shell without longitudinal stretching, using a power approximation of the deformation diagram, the loading process up to destruction can be considered simple, which corresponds to Ilyushin’s theorem on simple loading. With the linear-power approximation of the deformation diagram, the process of loading the shell is not simple, but a comparative analysis of the stress state obtained with the power-law and linear-power approximation of the deformation diagram showed a slight difference at all stages of loading. Moreover, these differences decrease with increasing pressure, which allows us to conclude that the method of variable elasticity parameters can be applied to solving problems of autofreting cylindrical shells without longitudinal stretching, as well as loading such shells with internal pressure up to destruction.

作者简介

I. Andrianov

Komsomolsk-na-Amure State University

编辑信件的主要联系方式.
Email: ivan_andrianov_90@mail.ru
Komsomolsk-na-Amure, Russia

S. Feoktistov

Komsomolsk-na-Amure State University

Email: serg_feo@mail.ru
Komsomolsk-na-Amure, Russia

参考

  1. Shufen R., Dixit U.S. A review of theoretical and experimental research on various autofrettage processes // J. Pressure Vessel Technol., 2018, vol. 140, no. 5, pp. 050802.
  2. Zhu R., Zhu G., Tang F. Analysis on autofrettage of cylinders // Chin. J. Mech. Eng, 2012, no. 25, pp. 615–623. https://doi.org/10.3901/CJME.2012.03.615
  3. Dixit U.S., Kamal S.M., Shufen R. Autofrettage Processes: Technology and Modelling. Boca Raton: CRC Press, 2019. 276 p.
  4. Sun L., Sun L., Li G., Wang Y., Mitrouchev P. Research on optimum autofrettage pressure of thick-walled cylinders // in: Lecture Notes in Electrical Engng., 2024, vol. 1154. https://doi.org/10.1007/978-981-97-0665-5_42
  5. Rajput M., Kamal S.M., Patil R.U. Analysis of thermal autofrettage of disks using von Mises yield criteria // in: Lecture Notes in Mech. Engng. Springer: Singapore, 2024. https://doi.org/10.1007/978-981-97-0418-7_31
  6. Hu Z., Parker A.P. Residual Stress Analysis of Re-autofrettage of a Swage-Autofrettaged tube by computer modeling incorporating accurate material representation // J. of Mater. Eng.&Perform, 2024, no. 33, pp. 7455–7464. https://doi.org/10.1007/s11665-024-09272-2
  7. Mohamed E., Ramin S., Ossama R. Development of an efficient design optimization strategy for thick-walled cylinders treated with combinations of autofrettage, shrink-fit and wire-winding processes // Int. J. Engng. Sci.&Technol., 2024, no. 57, pp. 101799. https://doi.org/10.1016/j.jestch.2024.101799
  8. Kim T., Kim H.Y. Optimal autofrettage process design for enhancing the fatigue life of the ultra-high-pressure hydrogen valve // J. Mech. Sci. Technol., 2024, no. 38, pp. 4847–4859. https://doi.org/10.1007/s12206-024-0820-7
  9. Jahed H., Dubey R.N. An axisymmetric method of elasticplastic analysis capable of pre-dicting residual stress field // ASME J. of Pressure Vessel Technol., 1997, no. 119 (3), pp. 264–273.
  10. Smirnov-Alyaev G.A. Theory of Self-Fastening of Cylinders. Moscow: Oborongiz, 1940. 284 p. (in Russian)
  11. Malinin N.N. Applied Theory of Plasticity and Creep. Moscow: Mashinostroenie, 1975. 399 p. (in Russian)
  12. Pisarenko G.S., Mozharovsky N.S. Equations and Boundary Value Problems of the Theory of Plasticity and Creep. Kiev: Nauk. Dumka, 1981. 496 p. (in Russian)
  13. Andrianov I.K., Feoktistov S.I. Inverse problem of elastic-plastic deformation of a free thick-walled cylindrical shell taking into account the nonlinear law of hardening // Probl. of Strength&Plasticity, 2024, no. 86, pp. 259–269. https://doi.org/10.32326/1814-9146-2024-86-3-259-269
  14. Andrianov I.K., Feoktistov S.I. Bearing capacity of spherical thick-walled shell taking into account compressibility and nonlinear plasticity // Mater. Phys.&Mech., 2022, no. 50(3), pp. 410–419. https://doi.org/10.18149/MPM.5032022_5
  15. Feoktistov S.I., Andrianov I.K., Htet L. Modeling of the stress-strain state of thick-walled cylindrical shells taking into account the physical nonlinearity of the material // Sci. Notes of Komsomolsk-on-Amur State Tech. Univ., 2022, no. 3 (59), pp. 12–20. (in Russian) https:/doi.org/10.17084/20764359-2022-59-12
  16. Zubchaninov V.G. Fundamentals of the Theory of Elasticity and Plasticity. Moscow : Vysshaya Shkola, 1990. 367 p. (in Russian)
  17. Hodge P.G., White G.N. A quantative comparison of flow and deformation theories of plasticity // J. of Appl. Mech., 1950, vol. 17, no. 2, pp. 180–184.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».